Zeitschrift für Rechtsmedizin

, Volume 83, Issue 3, pp 225–232 | Cite as

Investigation of the Short-Time Autolysis of Rat Hearts by Means of SDS

Polyacrylamide gel electrophoresis and electron microscopy
  • E. Vándor
  • T. Varga
Originalarbeiten / Original Works


The short-time autolysis of hearts was regarded as a model of ischaemic heart failure. Therefore, isolated rat hearts were subjected to 30–120 min autolysis in a Locke solution at 37°C. Electron microscopic examinations and myofibrillar preparations were made from the autolysed heart ventricles. The myofibrillar proteins were resolved by SDS-polyacrylamide gel electrophoresis. After 30 min autolysis the amount of a protein of 192,000 daltons greatly increased. At the same time on the electron micrographs the focal destruction of filaments adhering to intercalary discs could be observed as well as a focal filament destruction on the A filament area and the mitochondrial structure altered too. After 60 min autolysis another protein of 36,400 daltons appeared. On the electron micrographs the focal desintegration of Z membranes and the focal destruction of I filaments can be observed. After 120 min autolysis further proteolytic products could not be detected by gel electrophoresis but on the electron micrographs the destruction of Z membranes and I filaments became more pronounced.

Key words

Autolysis, rat heart Ischaemia, short-time autolysis as a model 


Die Kurzzeitautolyse des Myocard wird als Beispiel für einen Hypoxieschaden betrachtet. Isolierte Rattenherzen wurden einer Autolyse von 30, 60 und 120 min in Lockescher Lösung bei 37°C unterworfen und elektronenmikroskopische Untersuchungen sowie eine Präparation der Myofibrillen durchgeführt. Die Proteine der Myofibrillen wurden durch SDS- Polyacrylamid-Gel-Elektrophorese aufgetrennt. Nach 30 min Autolyse fand sich eine Zunahme eines Proteins von 192000 Dalton. Zur gleichen Zeit konnte elektronenmikroskopisch sowohl eine fokale Zerstörung der Filamente, die zu den Zwischenscheiben gehören, als auch die fokale Zerstörung der Filamente im Bereich der A-Filamente beobachtet werden. Auch änderte sich die Mitochondrienstruktur. Nach 60 min Autolyse erschien ein weiteres Protein von 36 400 Dalton. Elektronenmikroskopisch konnte eine fokale Desintegration der Z-Membranen und eine fokale Zerstörung der I-Filamente beobachtet werden. Nach 120 min Autolyse fanden sich elektrophoretisch keine weiteren proteolytischen Produkte, aber elektronenmikroskopisch zeigte sich eine Zerstö rung der Z-Membranen und I-Filamente.


Autolyse, Rattenmyocard Hypoxie, Kurzzeitautolyse als Beispiel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armiger, L. C., Seelye, R. N., Carnell, V. M., Smith, C. U., Gavin, J. B., Herdson, P. B.: Morphologic and biochemical changes in autolysing dog heart muscle. Lab. Invest.34, 357–362 (1976)PubMedGoogle Scholar
  2. 2.
    Burch, G. E., Tsui, C. Y., Harb, J. M.: Postmortem changes in the rat myocardium. Pathol. Microbiol. (Basel)38, 233–248 (1972)Google Scholar
  3. 3.
    Büchner, F.: Qualitative morphology of heart failure. Methods Achiev. Exp. Pathol.5, 60–120 (1971)PubMedGoogle Scholar
  4. 4.
    Clarke, F. M., Lowell, S. J., Masters, C. J., Winzor, D. J.: Beef muscle troponin: evidence for multiple forms of troponin-T. Biochim. Biophys. Acta427, 617–626 (1976)PubMedGoogle Scholar
  5. 5.
    Cole, H. A., Perry, S. V.: The phosphorilation of troponin-I from cardiac muscle. Biochem. J.149, 525–537 (1975)PubMedGoogle Scholar
  6. 6.
    Colowick, S. F., Kaplan, N. O.: Methods in enzymology III. New York: Academic Press Inc. 1957Google Scholar
  7. 7.
    Cummins, P., Perry, S. V.: The subunits and biological activity of polymorphic forms of tropomyosin. Biochem. J.133, 765–777 (1973)PubMedGoogle Scholar
  8. 8.
    Delcayre, C., Swynghedauw, B.: A comparative study of heart myosin ATPase and light subunits from different species. Pflügers Arch.355, 39–47 (1975)CrossRefPubMedGoogle Scholar
  9. 9.
    Drabikowski, W., Górecka, A., Jakubiec-Puka, A.: Endogenous proteinases in vertebrate skeletal muscle. Int. J. Biochem.8, 61–71 (1977)CrossRefGoogle Scholar
  10. 10.
    Drabikowski, W., Nowak, E., Barylko, B., Dabrowska, R.: Troponin—its composition and interaction with topomyosin and F-actin. Cold Spring Harbor Symp. Quant. Biol.37, 245–249 (1973)Google Scholar
  11. 11.
    Frearson, N., Perry, S. V.: Phosphorilation of the light-chain components of myosin from cardiac and red skeletal muscles. Biochem. J.151, 99–107 (1975)PubMedGoogle Scholar
  12. 12.
    Greaser, M. L., Yamaguchi, M. Y., Brekke, C., Potter, J., Gergely, J.: Troponin subunits and their interactions. Cold Spring Harbor Symp. Quant. Biol.37, 235–244 (1972)Google Scholar
  13. 13.
    Grochowski, E. G., Ganote, C. E., Jennings, R. B.: Effects of autolysis on respiration and cell volume regulation in dog myocardium. Am. J. Pathol.70, 16–17 (1973)Google Scholar
  14. 14.
    Herdson, B. P., Kaltenbach, J. P., Jennings, R. B.: Fine structural and biochemical changes in dog myocardium during autolysis. Am. J. Pathol.57, 539–558 (1969)PubMedGoogle Scholar
  15. 15.
    Korb, G., David, H.: Fluoreszenzmikroskopische und elektronenoptische Untersuchungen am Herzmuskel der Ratte nach Leuchtgasvergiftungen. Dtsch. Z. Gerichtl. Med.52, 549–557 (1962)Google Scholar
  16. 16.
    Leger, J., Bouveret, P., Schwartz, K., Swynghedauw, B. A.: Comparative study of skeletal and cardiac tropomyosins. Pflügers Arch.362, 271–277 (1976)CrossRefPubMedGoogle Scholar
  17. 17.
    Malhotra, A., Ban, A., Scheuer, J.: Biochemical characteristics of human cardiac myosin. J. Mol. Cell. Cardiol.9, 73–80 (1977)CrossRefPubMedGoogle Scholar
  18. 18.
    Perry, S. V.: The bound nucleotide of the isolated myofibril. Biochem. J.51, 495–499 (1952)PubMedGoogle Scholar
  19. 19.
    Pinset-Härström, I., Ehrlich, E.: A specific method for the preparation of pure myosin. FEBS Lett.34, 227–231 (1973)CrossRefPubMedGoogle Scholar
  20. 20.
    Porzio, M. A., Pearson, A. M.: Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim. Biophys. Acta490, 27–34 (1977)PubMedGoogle Scholar
  21. 21.
    Sarkar, S., Sreter, F. A., Gergely, J.: Light chains of myosine from white, red, and cardiac muscles. Proc. Natl. Acad. Sci. USA68, 946–950 (1971)PubMedGoogle Scholar
  22. 22.
    Sender, P. M.: Muscle fibrils: Solubilization and gel electrophoresis. FEBS Lett.17, 106–110 (1971)CrossRefPubMedGoogle Scholar
  23. 23.
    Syska, H., Perry, S. V., Trayer, I. P.: A new method of preparation of troponin-I (inhibitory protein) using affinity chromatography. Evidence for three different forms of troponin-I in striated muscle. FEBS Lett.40, 253–257 (1974)CrossRefPubMedGoogle Scholar
  24. 24.
    Vándor, E.: Myofibrillar ATPase activity and myofibrillar proteins of deep freezed muscles (in Hungarian). Kisérletes Orvostudomány29, 272–278 (1977)Google Scholar
  25. 25.
    Vándor, E., Józsa, L.: Postmortale Veränderungen in den myofibrillären Eiweißkomponenten und der myofibrillären Adenosintriphosphatasenaktivität der Skelettmuskulatur. Z. Rechtsmed.80, 265–272 (1978)CrossRefPubMedGoogle Scholar
  26. 26.
    Varga, T., Somogyi, E.: Autolytic alterations of rat myocardium (in Hungarian). Morphológiai és Igazságügyi Orvosi Szemle14, 259–266 (1974)PubMedGoogle Scholar
  27. 27.
    Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem.244, 4406–4412 (1969)PubMedGoogle Scholar
  28. 28.
    Wikman-Coffelt, J., Fenner, C., Smith, A., Mason, D. T.: Comparative analyses of the kinetics and subunits of myosins from canine skeletal muscle and cardiac tissue. J. Biol. Chem.250, 1257–1262 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin • Heidelberg 1979

Authors and Affiliations

  • E. Vándor
    • 1
  • T. Varga
    • 2
  1. 1.National Institute of TraumatologyBudapestHungary
  2. 2.Institute of Experts in Forensic MedicineBudapestHungary

Personalised recommendations