European Journal of Clinical Pharmacology

, Volume 43, Issue 3, pp 229–233 | Cite as

Pharmacodynamics of salmon calcitonin in humans: New markers of pharmacological activity

  • T. Di Perri
  • F. Laghi Pasini
  • P. L. Capecchi
  • P. Blardi
  • A. L. Pasqui
  • M. Franchi
  • S. Mazza
  • N. Sodi
  • L. Domini
  • L. Ceccatelli
  • L. Volpi
Originals

Summary

In order to define the pharmacodynamic profile of salmon calcitonin (sCT) in humans, several markers of the biological activity of the drug have been studied, namely cAMP, adenosine and pO2 in venous blood, and the cytosolic free calcium level in circulating cells. Different dosages and routes of administration (1.5 IU. kg−1 and 0.75 IU kg−1 IM, and 1.5 IU. kg−1 via nasal spray) were compared.

sCT caused an increase in cAMP, adenosine and pO2, and a decrease in cytosolic free calcium in neutrophils, lymphocytes and platelets. The peak times of all these parameters ranged between 109 and 182 min, and 101 and 168 min after IM and nasal spray administration respectively. There was greater variability in the values after IM than nasal spray of administration of sCT.

It is concluded that adenosine and p02 in venous blood, and cytosolic free calcium in circulating cells are valuable markers of the activity of sCT and that sCT decreases the cytosolic free calcium level in neutrophils, lymphocytes and platelets. Pharmacodynamic analysis of the biological effects of the drug is highly reliable and valuable in predicting its pharmacological profile. sCT administration via a nasal spray is able to produce significant biological effects, although they are less marked than after IM dosing.

Key words

Salmon calcitonin pharmacodynamics adenosine pO2 IM dosing nasal spray dosing cytosolic calcium neutrophils platelets lymphocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacIntyre I, Craig RK (1982) Molecular evolution of the calcitonins. In: Fink RG, Whalley LJ (eds) Neuropeptides: basic and clinical aspects. Proceedings of the 11th Pfizer International Symposium. September 1981. Churchill Livingstone, pp 255–258Google Scholar
  2. 2.
    Guttmann S (1981) Chemistry and structure-activity relationship of natural and synthetic calcitonin. In: Pecile A (ed) Calcitonin 1980. Proceedings International Symposium Milan 1980. Excerpta Medica Int Congr Ser 540: 11–24Google Scholar
  3. 3.
    Martin TJ, Robinson CJ, MacIntyre I (1966) The mode of action of thyrocalcitonin. Lancet 1: 900–902PubMedGoogle Scholar
  4. 4.
    Chambers TJ, Dunn CJ (1983) Pharmacological control of osteoclastic mobility. Calcif Tissue Int 35: 566–570PubMedGoogle Scholar
  5. 5.
    Azria M (1989) The calcitonins. Physiology and pharmacology. Karger, Basel, pp 1–152Google Scholar
  6. 6.
    Caniggia A, Gennari C (1987) Timing of the effects of bPTH (1–34), pCT and sCT on calcium and cAMP in man. Calcif Tissue Res suppl 2: 318–322Google Scholar
  7. 7.
    Gennari C, Chierichetti SM, Vibelli C, Francini G, Maioli E, Gonnelli S (1981) Acute effects of salmon, human and porcine calcitonin on plasma calcium and cyclic AMP levels in man. Curr Ther Res 30: 1024–1032Google Scholar
  8. 8.
    Berne RM (1985) Criteria for the involement of adenosine in the regulation of blood flow. In: Paton DM (ed) Methods in pharmacology, Plenum Press, New York, pp 331–336Google Scholar
  9. 9.
    Sparks HV Jr, Gorman MW (1987) Adenosine in the local regulation of blood flow: current controversies. In Gerlach E, Becker BF (eds) Topic and perspectives in adenosine research. Springer Berlin Heidelberg New York, pp 406–415Google Scholar
  10. 10.
    Perr HM, Kahn AJ, Chappel JC, Kohler G, Teitelbaum SL, Peck WA (1983) Calcitonin response in circulating human lymphocytes. Endocrinology 113: 1568–1573Google Scholar
  11. 11.
    Grynkievicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450Google Scholar
  12. 12.
    Muir KT (1980) Non-linear least squares regression analysis in pharmacokinetics: application of a programmable calculator in model parameter estimation. Comput Biomed Res 13: 307–316CrossRefPubMedGoogle Scholar
  13. 13.
    Singer FR, Rude RK, Mills BG (1976) Studies of the treatment and aetiology of Paget's disease of bone. In: MacIntyre I (ed) Human calcitonin and Paget's disease. Proceedings of an International Workshop, London, April 1976, Huber, Bern Stuttgart Toronto, pp 93–110Google Scholar
  14. 14.
    Vattimo et al. (unpublished data)Google Scholar
  15. 15.
    Shepherd AP, Riedel GL, Maxwell LC, Kiel JW (1984) Selective vasodilators redistribute intestinal blood flow and depress oxygen uptake. Am J Physiol 247: 377–384Google Scholar
  16. 16.
    Christopher YP, Choong C, Gary S, Roubin G, Wei-Feng Shen M, Phillip J, Harris P, Kelly D (1985) Effects of nifedipine on systemic and regional oxygen transport and metabolism at rest and during exercise. Circulation 71: 787–796Google Scholar
  17. 17.
    Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25: 197–207CrossRefPubMedGoogle Scholar
  18. 18.
    Laghi Pasini F, Capecchi PL, Orrico A, Ceccatelli L, Di Perri T (1985) Adenosine inhibits polymorphonuclear in vitro activation: a possible role as an endogenous calcium entry blocker. J Immunopharmacol 7: 203–215Google Scholar
  19. 19.
    Laghi Pasini F, Capecchi PL, Pasqui AL, Ceccatelli L, Di Perri T, Valensin G, Gaggelli E (1990) Adenosine blocks calcium entry into activated neutrophils and binds to flunarizine-sensitive calcium channels. Immunopharmacol Immunotoxicol 12: 77–93Google Scholar
  20. 20.
    Klabunde RE (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 93: 21–26CrossRefPubMedGoogle Scholar
  21. 21.
    Kishikawa T, Shimazawa E, Ogata E (1982) Involvement of calcium in calcitonin induced stimulation of glycolysis in rat kidney in situ. Endocrinol Japan 29: 149–157Google Scholar
  22. 22.
    Borle AB (1983) Calcitonin and the regulation of calcium transport and of cellular calcium metabolism. Triangle 2: 75–90Google Scholar
  23. 23.
    Koida M, Yamamoto Y, Nakamuta H, Matsuo J, Okamoto M, Morimoto T, Seyler JK, Orlowski RC (1982) A novel effect of salmon calcitonin on in vitro Ca-uptake by rat brain hypothalamus: the regional and hormonal specificities. Jap J Pharmacol 32: 981–986PubMedGoogle Scholar
  24. 24.
    Pecile A, Olgiati VR, Sibilia V (1983) Attività analgesica di calcitonina di diversa origine. In: Gennari C, Segre G (eds) The effects of calcitonin in man. Proceedings 1st International Workshop, Florence 1982, Masson Paris, pp 205–211Google Scholar
  25. 25.
    Murphy E, Chamberlin ME, Mandel LJ (1986) Effects of calcitonin on cytosolic Ca++ in a suspension of rabbit medullary thick ascending limb tubules. Am J Physiol 251: C491-C495PubMedGoogle Scholar
  26. 26.
    Yamaguchi M (1989) Effect of calcitonin on exchangeable calcium transport in isolated rat hepatocytes. Mol Cell Endocrinol 62: 313–318PubMedGoogle Scholar
  27. 27.
    Malgaroli A, Meldolesi J, Zamboni Zallone A, Teti A (1989) Control of cytosolic free calcium in rat and chicken osteoclasts. The role of extracellular calcium and calcitonin. J Biol Chem 264: 14342–14347PubMedGoogle Scholar
  28. 28.
    MacIntyre I (1988) The radioimmunoassay of calcitonin and the calcitonin gene peptide: relationship to the biological activity. In: Mazzuoli GF (ed) Calcitonin '88, Rome March 26–27 1988. Si Stempa Medica s. p. a., S. Donato Milanese, pp 9–14Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. Di Perri
    • 1
  • F. Laghi Pasini
    • 1
  • P. L. Capecchi
    • 1
  • P. Blardi
    • 1
  • A. L. Pasqui
    • 1
  • M. Franchi
    • 1
  • S. Mazza
    • 1
  • N. Sodi
    • 1
  • L. Domini
    • 1
  • L. Ceccatelli
    • 1
  • L. Volpi
    • 1
  1. 1.Department of Internal MedicineUniversity of Siena School of MedicineSienaItaly

Personalised recommendations