Skip to main content
Log in

The accuracy of field measurements of solar reflectivity

Über die Genauigkeit der Messungen des Reflexionsvermögens von Sonnenstrahlung

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B Aims and scope Submit manuscript

Summary

The absolute errors to be expected in reflectivity measured with four different types of commercially available 2nd Class pyranometers have been enumerated and evaluated from laboratory studies and W. M. O. recommendations. The maximum errors to be expected were between ±10 and ±20% at a solar elevation of 60° and between ±20 and ±30% for a solar elevation of 10°. The comparative error, i. e., the difference in reflectivity measured by different types of pyranometers, was measured under field conditions and reached 25% at a solar elevation of 60° and 40% at 10°. Random errors, including those due to individual differences in pyranometers of the same type, were found to be negligibly small. Large and asymetrial diurnal variations in reflectivity were observed. They paralleled the diurnal changes in the fraction of diffuse incident radiation, but could not be explained by changes of the fractional infrared composition of solar radiation as the latter were very small. Analysis by multiple regression suggested that the reflectivity for the direct beam radiation was higher than for the diffuse radiation.

Zusammenfassung

Die absoluten Fehler, die zu erwarten sind, wenn man die Reflexion mit vier verschiedenen von der Industrie gelieferten Pyranometern der Kategorie 2 nach der WMO-Einteilung mißt, wurden in Laboratoriumsexperimenten entsprechend WMO-Rekommandationen bestimmt und berechnet. Die maximalen Fehler, die man erwarten muß, liegen zwischen ±10 und ±20% bei einer Sonnenhöhe von 60° und zwischen ±20 und ±30% bei einer Sonnenhöhe von 10°. Die Abweichungen zwischen den Instrumenten, d. h. die Unterschiede der Reflektivität, wenn man sie mit verschiedenen Arten von Pyranometern mißt, wurden im Feld bestimmt und erreichten 25% bei einer Sonnenhöhe von 60° und 40% bei 10°. Die Zufallsfehler, welche auch die Fehler umfassen, die durch individuelle Unterschiede der einzelnen Pyranometer derselben Type entstehen, wurden als vernachlässigbar klein erkannt. Es wurden große und unsymmetrische Tagesgänge der Reflektivität beobachtet. Sie verlaufen parallel zum Tagesgang des Anteils der diffusen einfallenden Strahlung, können aber nicht durch Änderungen im Ausmaß des infraroten Spektralanteils der Sonnenstrahlung erklärt werden, da der letztere sehr klein war. Eine Untersuchung mit multiplen Regressionen ergab, daß die Reflektivität für direkte Strahlung höher ist als für diffuse Strahlung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M. C.: The Role of Heat Transfer in the Design and Performance of Solarimeters. J. appl. Meteorol.6, 941–947 (1967).

    Article  Google Scholar 

  2. Ångström, A.: The Solar Constant and the Temperature of the Earth. Progress in Oceanography3, 1–5 (1965).

    Google Scholar 

  3. Brounstein, A. M., K. D. Lebedeva, andS. I. Sivkov: Influence of Spectral Characteristics of Receiving Surfaces of Instruments on the Accuracy of Measuring Radiant Fluxes. P. 218–226, in: Actinometry and Atmospheric Optics, Tallinn, Valgus (1968).

  4. Colwell, R. N.,et al.: Basic Matter and Energy Relationships Involved in Remote Reconnaissance. Photogr. Engng29, 761–799 (1963).

    Google Scholar 

  5. Cowan, I. R.: The Interception and Absorption of Radiation in Plant Stands. J. appl. Ecol.5, 367–379 (1968).

    Google Scholar 

  6. Drummond, A. M.: On the Measurement of Sky Radiation. Arch. Met. Geoph. Biokl., B,7, 414–436 (1956).

    Google Scholar 

  7. Drummond, A. M.: The Absolute Calibration of Thermal Radiation Detectors. Proc. 22nd Ann. Conf. Instrument Soc. America P 6-1-PHYMMID-67 (1967).

  8. Drummond, A. M.: Instruction Manual: Solar Radiation Instrumentation and Measurement Methods. U.S. Army Natick Laboratories, S. O. 18248 (DAAG 17-67-M-2421) (1968).

  9. Flowers, E. C., andN. F. Helfert: Laboratory and Field Investigations of Eppley Radiation Sensors. Mo. Weather Rev.94, 259–264 (1966).

    Google Scholar 

  10. Fuquay, D., andK. Buettner: Laboratory Investigations of Some Characteristics of the Eppley Pyrheliometer. Trans. Am. geophys. Un.38, 38–43 (1957).

    Google Scholar 

  11. Gates, D. M.: Radiant Energy, Its Receipt and Disposal. Meteorological Monographs6, 1–26 (1965).

    Google Scholar 

  12. Griffiths, J. S.: Test Requirements, in: Handbook of Solar Simulation for Thermal Vacuum Testing. CR. 4, pp. 1–23. Institute of Environmental Sciences, Mt. Prospect, Ill. (1968).

    Google Scholar 

  13. Grulois, J.: La variation annuelle du coefficient d'albedo des surfaces superieures du Peuplement. Bull. Soc. R. Bot. Belgique101, 141–153 (1968).

    Google Scholar 

  14. Hamilton, R. A., andR. H. Collingbourne: A Difficulty in the Interpretation of Certain Solar Radiation Measurements. Q. J. R. Met. Soc.93, 186–194 (1967).

    Google Scholar 

  15. Harris, L.: The Optical Properties of Metal Blacks and Carbon Blacks. Monograph Series No. 1. The Eppley Foundation for Research, Newport, R. I. (1967).

    Google Scholar 

  16. Hart, H. E., andN. J. Rosenberg: An Extended Cylindrical Shield for Use with an Inverted Eppley Pyranometer to Measure Albedo over Small Areas. Hort. Prog. Rep.60, 30–42. Univ. of Nebraska agric. Exp. Stn. (1967).

    Google Scholar 

  17. Hill, A. N.: Calibration of Solar Radiation Equipment in the U. S. Weather Bureau. Solar Energy10, 1–4 (1966).

    Article  Google Scholar 

  18. Howard, J. A.: Spectral Energy Relations of Isobilateral Leaves. Aust. J. biol. Sci.,19, 757–766 (1966).

    Google Scholar 

  19. Isobe, S.: Preliminary Studies on Physical Properties of Plant Communities. Bull. Natn. Inst. Agric. Sci. (Japan), A,9, 29–67 (1962).

    Google Scholar 

  20. Latimer, J. R.: Calibration Program of the Canadian Meteorological Service. Solar Energy10, 4–7 (1966).

    Article  Google Scholar 

  21. Latimer, J. R.: Investigation of Solar Radiation Instruments at the National Atmospheric Radiation Centre of the Canadian Meteorological Service. Paper No. 3/1, Int. Solar Energy Soc. Conf., Melbourne (1970).

  22. Lettau, H., andK. Lettau: Short Wave Radiation Climatonomy. Tellus21, 208–222 (1969).

    Google Scholar 

  23. MacDonald, T. H.: Some Characteristics of the Eppley Pyrheliometer. Mo. Weather Rev.79, 153–159 (1951).

    Google Scholar 

  24. Mantell, A. andG. Stanhill: Comparison of Methods for Evaluating the Response of Lawn Grass to Irrigation and Nitrogen Treatment. Agron. J.58, 465–468 (1966).

    Google Scholar 

  25. Monteith, J. L.: Solarimeter for Field Use. J. Scient. Instrum.36, 341–346 (1959).

    Google Scholar 

  26. Rijks, D. A.: Water Use by Irrigated Cotton in Sudan. 1. Reflection of Short-Wave Radiation. J. Appl. Ecol.4, 561–568 (1967).

    Google Scholar 

  27. Robinson, N.: Solar Radiation. New York: Elsevier, 1966.

    Google Scholar 

  28. Rusin, N.: Meteorological and Radiational Regime of Antarctica. Israel Progr. Scient. Transl., Jerusalem, 1964.

    Google Scholar 

  29. Scott, D., P. H. Menalda, andR. W. Brougham: Spectral Analysis of Radiation Transmitted and Reflected by Different Vegetations. N. Z. J. Bot.6, 427–449 (1968).

    Google Scholar 

  30. Simpson, G. C.: Further Studies in Terrestrial Radiation. Mem. R. Meteor. Soc.3, 1–26 (1928).

    Google Scholar 

  31. World Meteorological Organization: Measurement of Radiation and Sunshine. Guide to Meteorological Instruments and Observing Practices. 2nd ed., Geneva, 1965.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Contribution from The Volcani Institute of Agricultural Research, Bet Dagan, Israel. 1970 Series, No. 1810-E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanhill, G., Fuchs, M. & Oguntoyinbo, J. The accuracy of field measurements of solar reflectivity. Arch. Met. Geoph. Biokl. B. 19, 113–132 (1971). https://doi.org/10.1007/BF02332259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02332259

Keywords

Navigation