The Histochemical Journal

, Volume 28, Issue 3, pp 217–225 | Cite as

Histochemical localization of autometallographically detectable mercury in tissues of the immune system from mice exposed to mercuric chloride

  • Margot M. Christensen


The distribution of mercury in the spleen, liver, lymph nodes, thymus and bone marrow was studied by autometallography in mice exposed to mercuric chloride intraperitoneally. Application of immunofluorescence histochemistry and an autometallographic silver amplification method was employed to the same tissue section. Mercury was not only detected in macrophages marked by the antibody M1/70 but also in macrophage-like cells, which were either autofluorescent or devoid of fluorescent signals. These two cell types were identified as macrophages at the electron microscopical level. Autometallographically stained macrophages were observed in the spleen, lymph nodes, thymus and in Kupffer cells of the liver. Furthermore, mercury was observed in endothelial cells. No obvious pathological disturbances were observed at light and electron microscopical level. At the subcellular level mercury was localized in lysosomes of macrophages and endothelial cells.


Lymph Node Chloride Bone Marrow Endothelial Cell Mercury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austyn, J. M. &Gordon, S. (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage.Eur. J. Immunol. 11, 805–15.PubMedGoogle Scholar
  2. Baatrup, E., Thorlacius-Ussing, C., Nielsen, H. L. &Wilsky, K. (1989) Mercury selenium interactions in relation to histochemical staining of mercury in the rat liver.Histochem. J. 21, 89–98.PubMedGoogle Scholar
  3. Basson, A. B., Terblanche, S. E. &Oelofsen, W. (1982) A comparative study on the effects of ageing and training on the levels of lipofuscin in various tissues of the rat.Comp. Biochem. Physiol. A. 71, 369–74.PubMedCrossRefGoogle Scholar
  4. Beregi, E. &Regius, O. (1983) Lipofuscin in lymphocytes and plasma cells in aging.Arch. Gerontol. Geriatr. 2, 229–35.PubMedCrossRefGoogle Scholar
  5. Carmichael, N. G. &Fowler, B. A. (1980) Effects of separate and combined chronic mercuric chloride and sodium selenate administration in rat: histological, ultrastructural, and x-ray microanalytic studies of liver and kidney.J. Environ. Pathol. Toxicol. 3, 399–412.Google Scholar
  6. Christensen, M., Mogensen, S. C. &Rungby, J. (1988) Toxicity and ultrastructural localization of mercuric chloride in cultured murine macrophages.Arch. Toxicol. 62, 440–6.PubMedCrossRefGoogle Scholar
  7. Christensen, M., Rungby, J. &Mogensen, S. C. (1989) Effects of selenium on toxicity and ultrastructural localization of mercury in cultured murine macrophages.Toxicol. Lett. 47, 259–70.PubMedCrossRefGoogle Scholar
  8. Christensen, M., Ellermann Eriksen, S., Rungby, J., Mogensen, S. C. &Danscher, G. (1991) Histochemical and functional evaluation of mercuric chloride toxicity in cultured macrophages.Prog. Histochem. Cytochem. 23, 306–15.PubMedGoogle Scholar
  9. Christensen, M. M., Ellermann Eriksen, S., Rungby, J. &Mogensen, S. C. (1993) Comparison of the interaction of methyl mercury and mercuric chloride with murine macrophages.Arch. Toxicol. 67, 205–11.PubMedCrossRefGoogle Scholar
  10. Crichton, D. N. &Shire, J. G. (1982) Genetic basis of susceptibility to splenic lipofuscinosis in mice.Genet. Res. 39, 275–85.PubMedGoogle Scholar
  11. Danscher, G. (1981) Histochemical demonstration of heavy metals. A revised version of the sulphide silver method suitable for both light and electronmicroscopy.Histochemistry 71, 1–16.PubMedGoogle Scholar
  12. Danscher, G. (1984) Autometallography. A new technique for light and electron microscopic visualization of metals in biological tissues (gold, silver, metal sulphides and metal selenides).Histochemistry 81, 331–5.PubMedGoogle Scholar
  13. Danscher, G. (1991) Histochemical tracing of zinc, mercury, silver and gold.Prog. Histochem. Cytochem. 23, 273–85.PubMedGoogle Scholar
  14. Danscher, G. &Møller-Madsen, B. (1985) Silver amplification of mercury sulfide and selenide: a histochemical method for light and electron microscopic localization of mercury in tissue.J. Histochem. Cytochem. 33, 219–28.PubMedGoogle Scholar
  15. Ellerman Eriksen, S., Christensen, M. M. &Mogensen, S. C. (1994) Effect of mercuric chloride on macrophage-mediated resistance mechanisms against infection with herpes simplex virus type 2.Toxicology 93, 269–87.Google Scholar
  16. Foulkes, E. C. (1991) Nature of Cd and Hg effects on epithelial amino acid transportin vivo and role of chelators.Toxicology 69, 177–85.PubMedCrossRefGoogle Scholar
  17. Fowler, B. A., Brown, H. W., Lucier, G. W. &Beard, M. E. (1974) Mercury uptake by renal lysosomes (+MetHg art) of rats ingesting methyl mercury hydroxide.Arch. Pathol. 98, 297–301.PubMedGoogle Scholar
  18. Gainer, J. H. (1977) Effects of heavy metals and the deficiency of zinc on mortality rates in mice infected with encephalomyocarditis virus.Am. J. Vet. Res. 38, 669–72.Google Scholar
  19. Graham, J. A., Gardner, D. E., Waters, M. D. &Coffin, D. L. (1975) Effect of trace metals on phagocytosis by alveolar macrophages.Infect. Immun. 11, 1278–83.PubMedGoogle Scholar
  20. Hendriks, H. R. &Eestermans, I. L. (1986) Phagocytosis and lipofuscin accumulation in lymph node macrophages.Mechan. Ageing Dev. 35, 161–7.Google Scholar
  21. Ikeda, H., Tauchi, H. &Sato, T. (1985) Fine structural analysis of lipofuscin in various tissues of rats of different ages.Mechan. Ageing Dev. 33, 77–93.Google Scholar
  22. Klein, R., Herman, S. P., Brubaker, P. E., Lucier, G. W. &Krigman, M. R. (1972) A model of acute methyl mercury intoxication in rats.Arch. Pathol. 93, 408–18.PubMedGoogle Scholar
  23. Koller, L. D. (1975) Methylmercury: effect on oncogenic and nononcogenic viruses in mice.Am. J. Vet. Res. 36, 1501–4.PubMedGoogle Scholar
  24. Laschi-Loquerie, A., Eyraud, A., Morisset, D., Sanou, A., Tachon, P., Veysseyre, C. &Descotes, J. (1987) Influence of heavy metals on the resistance of mice toward infection.Immunopharmacol. Immunotoxicol. 9, 235–41.PubMedGoogle Scholar
  25. Loose, L. D., Silkworth, J. B. &Warrington, D. (1977) Cadmium-induced depression of the respiratory burst in mouse pulmonary alveolar macrophages, pertioneal macrophages and polymorphonuclear neutrophils.Biochem. Biophys. Res. Commun. 79(1), 326–32.PubMedCrossRefGoogle Scholar
  26. Madsen, K. M. &Christensen, E. I. (1978) Effects of mercury on lysosomal protein digestion in the kidney proximal tubule.Lab. Invest. 38(2), 165–74.PubMedGoogle Scholar
  27. Mehra, M. &Kanwar, K. C. (1984) Clearance of parenterally administered 203Hg from the mouse tissues.Jepto 5–4/5, 127–30.Google Scholar
  28. Mogensen, S. C. (1977) Role of macrophages in hepatitis induced by herpes simplex virus types 1 and 2 in mice.Infect. Immun. 15, 686–91.PubMedGoogle Scholar
  29. Mogensen, S. C. &Virelizier, J.-L. (1987) The interferon-macrophage alliance.Interferon 8, 55–84.PubMedGoogle Scholar
  30. Møller-Madsen, B. (1990) Localization of mercury in CNS of the rat. II Intraperitoneal injection of methylmercuric chloride and mercuric chloride.Toxicol. Appl. Pharmacol. 103, 303–23.PubMedGoogle Scholar
  31. Møller-Madsen, B. (1992) Localization of mercury in CNS of the rat V. Inhalation exposure to metallic mercury.Arch. Toxicol. 66, 79–89.PubMedGoogle Scholar
  32. Møller-Madsen, B. &Danscher, G. (1991) Localization of mercury in CNS of the rat.Toxicol. Appl. Pharmacol. 108, 457–73.PubMedGoogle Scholar
  33. Nicholson, J. K., Osborn, D. &Kendall, M. D. (1984) Comparative distributions of zinc, cadmium and mercury in the tissues of experimental mice.Comp. Biochem. Physiol. B 77, 249–56.Google Scholar
  34. Nielsen, J. B. &Andersen, O. (1990) Disposition and retention of mercuric chloride in mice after oral and parental administration.J. Trace Elem. Electrolytes Health Dis. 30, 167–80.Google Scholar
  35. Norseth, T. &Brendeford, M. (1971) Intracellular distribution of inorganic and organic mercury in rat liver after exposure to methylmercury salts.Biochem. Pharmacol. 20, 1101–7.PubMedCrossRefGoogle Scholar
  36. Nørgaard, J. O., Ernst, E. &Juhl, S. (1994) Efficiency of autometallographic detection of mercury in the rat kidney.Histochem. J. 26, 100–2.PubMedCrossRefGoogle Scholar
  37. Nørgaard, J. O., Møller-Madsen, B., Hertel, N. &Danscher, G. (1989) Silver enhancement of tissue mercury: demonstration of mercury in autometallographic silver grains from rat kidneys.J. Histochem. Cytochem. 37, 1545–7.PubMedGoogle Scholar
  38. Planas-Bohne, F., Taylor, D. M. &Walser, R. (1985) The influence of administered mass on the subcellular distribution and binding of mercury in rat liver and kidney.Arch. Toxicol. 56, 242–6.PubMedCrossRefGoogle Scholar
  39. Schiønning, J. &Møller-Madsen, B. (1991) Autometallographic mapping of mercury deposits in the spinal cord of rats treated with inorganic mercury.Acta Neuropathol. Berl. 81, 434–42.PubMedCrossRefGoogle Scholar
  40. Schiønning, J., Møller-Mädsen, B. &Danscher, G. (1991a) Mercury in the dorsal root ganglia of rats treated with inorganic or organic mercury.Environ. Res. 56, 48–56.PubMedGoogle Scholar
  41. Schiønning, J. D., Poulsen, E. H., Møller-Madsen, B. &Danscher, G. (1991b) Ultrastructural localization of mercury in rat dorsal root ganglia after exposure to mercury vapor.Prog. Histochem. Cytochem. 23, 249–55.PubMedGoogle Scholar
  42. Sin, Y. M., Lim, Y. F. &Wong, M. K. (1983) Uptake and distribution of mercury in mice from ingesting soluble and insoluble mercury compounds.Bull. Environ. Contam. Toxicol. 31, 605–12.PubMedCrossRefGoogle Scholar
  43. Sin, Y. M., Wong, M. K. &Low, L. K. (1985) Effect of lead on tissue deposition of mercury in mice.Bull. Environ. Contam. Toxicol. 34, 438–45.PubMedCrossRefGoogle Scholar
  44. Slaper-Cortenbach, I. C., Admiraal, L. G., Kerr, J. M., Vanleeuwen, E. F., Von-Dem-Borne, A. E. &Tetterroo, P. A. (1988) Flow-cytometric detection of terminal deoxynucleotidyl transferase and other intracellular antigens in combination with membrane antigens in acute lymphatic leukemias.Blood 72, 1639–44.PubMedGoogle Scholar
  45. Springer, T., Galfre, G., Secher, D. S. &Milstein, C. (1979) Mac-1: a macrophage differentiation antigen identified by monoclonal antibody.Eur. J. Immunol. 9, 301–6.PubMedGoogle Scholar
  46. Vallee, B. L. &Ulmer, D. D. (1972) Biochemical effects of mercury, cadmium and lead.Ann. Rev. Biochem. 41, 91–128.PubMedGoogle Scholar
  47. Whittaker, S. G., Smith, D. G., Poster, J. R. &Rowland, I. R. (1990) Cytochemical localization of mercury inSaccharomyces cerevisiae treated with mercuric chloride.J. Histochem. Cytochem. 38, 823–7.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Margot M. Christensen
    • 1
  1. 1.Institute of Neurobiology and Department of Medical Microbiology and ImmunologyUniversity of AarhusAarhus CDenmark

Personalised recommendations