The Histochemical Journal

, Volume 28, Issue 7, pp 485–493 | Cite as

5-Hydroxytryptamine immunoreactivity is detectable in sympathetic nerve fibres in rat oral tissues

  • Lars-Inge Norevall
  • Lars Matsson
  • Sture Forsgren


The aim of this investigation was to examine if 5-hydroxytryptamine (5-HT) is detectable not only in mast cells but also in sympathetic nerve fibres in oral sites of the rat, including the periodontal ligament, pulp, palatal mucosa, and vestibular sulcus. Antibodies against 5-HT and tyrosine hydroxylase were used. Maxillae from rats were dissected free, fixed, decalcified, cut transversally, and processed for immunohistochemistry. Nerve fibres showing 5-HT-like immunoreactivity were regularly observed in the walls of the arteries and arterioles in the vestibular sulcus and the periodontal ligament. However, 5-HT-like immunoreactivity was not seen in the walls of the vessels of the palatal mucosa. Interestingly, 5-HT-like immunoreactivity coexisted with tyrosine hydroxylase-like immunoreactivity in the innervation of the periodontal ligament and the vestibular sulcus. Thus, the present study gives morphological correlate for the occurrence of effects of 5-HT derived not only from mast cells but also from sympathetic nerve fibres in oral tissues. The source of 5-HT in the nerve fibres as well as the functional implications of the observations remain to be determined.


Tyrosine Mast Cell Nerve Fibre Tyrosine Hydroxylase Sympathetic Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anneroth, G &Norberg, K. A. (1968) Adrenergic vasoconstrictor innervation in the human dental pulp.Acta Odont. Scand. 26, 89–93.PubMedGoogle Scholar
  2. Axelrod, J. (1974) The pineal gland: a neurochemical transducer.Science.184, 1341–8.PubMedGoogle Scholar
  3. Berkovitz, B. K. B. (1990) The structure of the periodontal ligament: an update.Eur. J. Orthod. 12, 51–76.PubMedGoogle Scholar
  4. Bjurholm, A., Kreicbergs, A. &Schultzberg, M. (1989) Fixation and demineralization of bone tissue for immunohistochemical staining of neuropeptides.Calcif. Tissue Int. 45, 227–31.PubMedGoogle Scholar
  5. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. &Macintyre, I. (1985) Caloitonin gene-related peptide is a potent vasodilator.Nature 313, 54–6.CrossRefPubMedGoogle Scholar
  6. Byers, M. R. (1985) Sensory innervation of periodontal ligament of rat molar consists of unencapsulated Ruffini-like mechanoreceptors and free nerve endings.J. Comp. Neurol. 231, 500–18.CrossRefPubMedGoogle Scholar
  7. Chang, J.-Y., Ekblad, E., Kannisto, P. &Owman, C. (1989) Serotonin uptake into cerebrovascular nerve fibers of rat, visualization by immunohistochemistry, disappearance following sympathectomy, and release during electrical stimulation.Brain Res. 492, 70–88.CrossRefGoogle Scholar
  8. Cohen, R. A. (1985) Platelet-induced coronary contractions due to accumulation of the false transmitter, 5-hydroxytryptamine.J. Clin. Invest. 75, 286–92.PubMedGoogle Scholar
  9. Cowen, T., Alafaci, C., Crockard, H. A. &Burnstock, G. (1986) 5-HT-containing nerves to major cerebral arteries of gerbil originate in the superior cervical ganglia.Brain Res. 384, 51–9.CrossRefPubMedGoogle Scholar
  10. Cowen, T., Alafaci, C., Crockard, H. A. &Burnstock, G. (1987) Origin and postnatal development of nerves showing 5-hydroxytryptamine-like immunoreactivity supplying major cerebral arteries of the rat.Neurosci. Lett. 78, 121–6.CrossRefPubMedGoogle Scholar
  11. Davidovitch, Z. (1991) Tooth movement.Crit. Rev. Oral Biol. Med. 2, 411–50.PubMedGoogle Scholar
  12. Dubner, R., Sessle, B. J. &Storey, A. T. (1978)The Neural Basis of Oral and Facial Function. New York: Plenum Press.Google Scholar
  13. Dubowitz, V. &Brooke, H. M. (1973)Muscle Biopsy: A Modern Approach. pp. 20–3. London; W. B. Saunders.Google Scholar
  14. Edwall, B. (1988) An application of the iodide clearance technique to monitor local changes in periodontal ligament blood flow.Acta Odont. Scand. 46, 119–26.PubMedGoogle Scholar
  15. Edwall, L. &Kindlova, M. (1971) The effect of sympathetic nerve stimulation on the rate of disappearance of tracers from various oral tissues.Acta Odont. Scand. 29, 387–400.PubMedGoogle Scholar
  16. Edwall, B., Gazelius, B., Fazekas, A., Theodorsson-Norheim, E. &Lundberg, J. M. (1985) Neuropeptide Y (NPY) and sympathetic control of blood flow in oral mucosa and dental pulp in the cat.Acta Physiol. Scand. 125, 253–64.PubMedGoogle Scholar
  17. Forsgren, S. &Söderberg, L. (1987) Immunohistochemical procedures for the demonstration of peptide- and tyrosine hydroxylase-containing nerve fibers in cryostat sections of unfixed rapidly frozen tissue stored for long period of time.Histochemistry 87, 561–8.CrossRefPubMedGoogle Scholar
  18. Gazelius, B., Edwall, B., Olgart, L., Lundberg, J. M., Hökfelt, T. &Fischer, J. A. (1987) Vasodilatory effects and coexistence of calcitonin gene-related peptide (CGRP) and substance P in sensory nerves of cat dental pulp.Acta Physiol. Scand. 130, 33–40.PubMedGoogle Scholar
  19. Gershon, M. D. (1981) The enteric nervous system.Annu. Rev. Neurosci. 4, 227–72.CrossRefPubMedGoogle Scholar
  20. Goodman, C. S. &Gilman, A. (1975)Physiological Basis of Therapeutics. 5th edn., New York: MacMillan.Google Scholar
  21. Griffith, S. G., Lincoln, J. &Burnstock, G. (1982) Serotonin as a neurotransmitter in cerebral arteries.Brain Res. 247, 388–92.CrossRefPubMedGoogle Scholar
  22. Hannam, A. G. (1982) The innervation of the periodontal ligament. InThe Periodontal Ligament in Health and Disease (edited byBerkovitz, B. K. B.) pp. 173–96. Oxford: Pergamon.Google Scholar
  23. Häppölä, O. Päivärinta, H., Soinila, S. &Steinbusch, H. (1986) Pre- and postnatal development of 5-hydroxytryptamine-immunoreactive cells in the superior ganglion of the rat.J. Autonom. Nerv. Syst. 15, 21–31.Google Scholar
  24. Hirafuji, M. &Ogura, Y. (1987) 5-Hydroxytryptamine stimulates the release of prostacyclin but not thromboxane A2 from isolated rat dental pulp.Eur. J. Pharmacol. 136, 433–6.CrossRefPubMedGoogle Scholar
  25. Iversen, L. L. (1974) Uptake mechanisms for neurotransmitter amines.Biochem. Pharmacol. 23, 1927–35.CrossRefPubMedGoogle Scholar
  26. Jackowski, A., Crockard, A. &Burnstock, G. (1989) 5-Hydroxytryptamine demonstrated immunohistochemically in rat cerebrovascular nerves largely represents 5-hydroxytryptamine uptake into sympathetic nerve fibers.Neuroscience 29, 453–62.CrossRefPubMedGoogle Scholar
  27. Jaim-Etcheverry, G. &Zieher, L. M. (1980) Stimulation-depletion of serotonin and noradrenaline from vesicles of sympathetic nerves in the pineal gland of the rat.Cell Tissue Res. 207, 13–20.CrossRefPubMedGoogle Scholar
  28. Kawasaki, H. &Takasaki, K. (1984) Vasoconstrictor response induced by 5-hydroxytryptamine released from vascular adrenergic nerves by periarterial nerve stimulation.J. Pharmacol. Exp. Ther. 229, 816–22.PubMedGoogle Scholar
  29. Keele, C. A. &Armstrong, D. (1968) Mediators of pain. InPharmacology of Pain. (Edited byLim, R. K. S., Armstrong, D. &Pardo, E. G.) pp. 3–24. Oxford: Pergamon.Google Scholar
  30. Kerezoudis, N. P. Funato, A., Edwall, L. &Olgart, L. (1993) Activation of sympathetic nerves exerts an inhibitory influence on afferent nerve-induced vasodilation unrelated to vasoconstriction in rat dental pulp.Acta Physiol. Scand. 147, 27–35.PubMedGoogle Scholar
  31. Kerezoudis, N. P., Nomikos, G. G., Olgart, L. M. &Svensson T. H. (1995) Serotonin in rat oral tissues: role of 5-HT1 receptors in sympathetic vascular control.Eur. J. Pharmacol. 275, 191–8.CrossRefPubMedGoogle Scholar
  32. Kim, S., Trowbridge, H. O. &Dörscher-Kim, J. E. (1986) The influence of 5-hydroxytryptamine (serotonin) on blood flow in the dog pulp.J. Dent. Res. 65, 682–5.PubMedGoogle Scholar
  33. Kimberly, C. L. &Byers, M. R. (1988) Inflammation of rat molar pulp and periodontium causes increased Calcitonin Gene-Related Peptide and axonal sprouting.Anat. Rec. 222, 289–300.CrossRefPubMedGoogle Scholar
  34. Koevary, S. B., Azmitia, E. C. &McFvoy, R. C. (1983) Rat pancreatic serotonergic nerves: morphologic, pharmacologic, and physiologic studies.Brain Res. 265, 328–32.CrossRefPubMedGoogle Scholar
  35. Kvinnsland, I. &Kvinnsland, S. (1990) Changes in CGRP-immunoreactive nerve fibres during experimental tooth movements in rats.Eur. J. Orthod. 12, 320–9.PubMedGoogle Scholar
  36. Lentz, S. I., Poosch, M. S., Hirayama, K., Kapatos, G. &Bannon, M. J. (1993) Substance-P gene expression in sympathetic neurones is regulated by neuron/support cell interaction.Develop. Brain Res. 73, 35–40.CrossRefGoogle Scholar
  37. Levitt, B. &Duckles, S. P. (1986) Evidence against serotonin as a vasoconstrictor neurotransmitter in the rabbit basilar artery.J. Pharmacol. Exp. Ther. 238, 880–5.PubMedGoogle Scholar
  38. Liu, M., Kim, S., Park, D. S., Markowitz, K., Bilotto, G. &Dörscherkim, J. (1990) Comparison of the effects of intra-arterial and locally applied vasoactive agents on pulpal blood flow in dog canine teeth determined by laser doppler velocimetry.Archs Oral Biol. 35, 405–10.CrossRefGoogle Scholar
  39. Liuzzi, A., Foppen, F. H., Saavedra, J. M., Levi-Montalcini, R. &Kopin, I. J. (1977) Gas chromatographic-mass spectrometric assay of serotonin in rat superior cervical ganglia. Effects of nerve growth factor and 6-hydroxydopamine.Brain Res.,133, 354–7.CrossRefPubMedGoogle Scholar
  40. Luthman, J., Johansson, O., Ahlström, U. &Kvint, S. (1988) Immunohistochemical studies of the neurochemical markers, CGRP, enkephalin, galanin, y-MSH, NPY, PHI, proctolin, PTH, somatostatin, SP, VIP, tyrosine hydroxylase and neurofilament in nerves and cells of the human attached gingiva.Archs Oral Biol. 33, 149–58.CrossRefGoogle Scholar
  41. Luthman, J., Luthman, D. &Hökfelt, T. (1992) Occurrence and distribution of different neurochemical markers in the human dental pulp.Archs Oral Biol. 37, 193–208.CrossRefGoogle Scholar
  42. Mathiau, P., Bakalara, N. &Aubineau, P. (1994) Tryptophan hydroxylase can be present in mast cells and nerve fibers of the rat dura mater but only mast cells contain serotonin.Neurosci. Lett.,182, 133–7.CrossRefPubMedGoogle Scholar
  43. Matsson, L., Norevall, L. I. &Forsgren, S. (1995) Anatomic relationship between substance P- and CGRP-immunoreactive nerve fibers and mast cells in the palatal mucosa of the rat.Eur. J. Oral. Sci. 103, 70–6.PubMedGoogle Scholar
  44. Ngassapa, D., Närhi, M. &Hirvonen, T. (1992) Effect of serotonin (5-HT) and calcitonin gene-related peptide (CGRP) on the function of intradental nerves in the dog.Proc. Finn, Dent. Soc. 88 (suppl. 1), 143–8.Google Scholar
  45. Norevall, L. I., Forsgren, S. &Matsson, L. (1995) Expression of neuropeptides (CGRP, Substance P) during and after orthodontic tooth movement in the rat.Eur. J. Orthod. 17, 311–25.PubMedGoogle Scholar
  46. Olgart, L. (1974) Excitation of intradental sensory units by pharmacological agents.Acta Physiol. Scand. 92, 48–55.PubMedGoogle Scholar
  47. Parker, I., Parker, D. A. S. &De La Lande, I. S. (1986) Catecholamine contents of rabbit gingiva and dental pulp.Aust. J. Exp. Biol. Med. Sci. 64, 465–9.PubMedGoogle Scholar
  48. Pohto, M. &Scheinin, A. (1958) Microscopic observations on the living dental pulp. II. The effect of thermal irritants on the circulation of the pulp in the lower rat incisor.Acta Odontol. Scand. 16, 315–27.Google Scholar
  49. Sah, D. W. &Matsumoto, S. G. (1987) Evidence for serotonin synthesis, uptake, and release in dissociated rat sympathetic neurons in culture.J. Neurosci. 7, 391–9.PubMedGoogle Scholar
  50. Saito, A. &Lee, J.-F. (1987) Serotonin as an alternative transmitter in sympathetic nerves of large cerebral arteries of the rabbit.Circ. Res. 60, 220–8.PubMedGoogle Scholar
  51. Schotzinger, R., Yin, X. H. &Landis, S. (1994) Target determination of neurotransmitter phenotype in sympathetic neurons.J. Neurobiol. 25, 620–39.CrossRefPubMedGoogle Scholar
  52. Silverman, J. D. &Kruger, L. (1987) An interpretation of dental innervation based upon the pattern of Calcitonin Gene-Related Peptide (CGRP)-immunoreactive thin sensory axons.Somatosensory Res. 5, 157–75.Google Scholar
  53. Stanley, M. I., Berger, R. J., Zuccarello, M. &Keller, J. T. (1993) Serotonin (5-HT) fibers of the rat dura mater: 5-HT-positive, but not authentic serotoninergic, tryptophan hydroxylase-like fibers.Neurosci. Lett. 162, 88–92.CrossRefGoogle Scholar
  54. Thoa, N. B. Eccleston, D. &Axelrod, J. (1969) The accumulation of14C-serotonin in the guinea-pig vas deferens.J. Pharmacol. Exp. Ther. 169, 68–73.PubMedGoogle Scholar
  55. Tramu, G., Pillez, A. &Leonardelli, J. (1978) An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry.J. Histochem. Cytochem. 26, 322–4.PubMedGoogle Scholar
  56. Verbeuren, T. J., Jordaens, F. H. &Herman, A. G. (1983) Accumulation and release of [3H]-5-hydroxytryptamine in saphenous veins and cerebral arteries of the dog.J. Pharmacol. Exp. Ther. 226, 579–88.PubMedGoogle Scholar
  57. Verhofstad, A. A. J., Steinbusch, H. W. M., Penke, B., Varga, J. &Joosten, H. W. J. (1981) Serotonin-immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate serotonin-and catecholamine-containing small ganglionic cells.Brain Res. 212, 30–49.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Lars-Inge Norevall
    • 1
  • Lars Matsson
    • 2
  • Sture Forsgren
    • 3
  1. 1.Department of OrthodonticsUmeå UniversityUmeåSweden
  2. 2.Department of PedodonticsUmeå UniversityUmeåSweden
  3. 3.Department of AnatomyUmeå UniversityUmeåSweden

Personalised recommendations