Advertisement

The Histochemical Journal

, Volume 28, Issue 9, pp 635–642 | Cite as

Nitric oxide synthase-containing nerves and ganglia in the dog prostate: A comparison with other transmitters

  • P. Hedlund
  • B. Larsson
  • P. Alm
  • K. -E. Andersson
Papers

Summary

The distribution of nitric oxide synthase immunoreactive nerves in the dog prostate was compared to the total innervation (as estimated by protein gene product 9.5 immunoreactivity), and to that of adrenergic (tyrosine hydroxylase-immunoreactive), cholinergic (acetylcholinesterase-positive), and some peptidergic nerves immunoreactive towards vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and helospectin. Clusters of ganglia with cell bodies containing acetylcholinesterase, or one of these six immunoreactive components, were found in the dorsal capsule. Coarse nerve trunks expressing these immunoreactive components extended from the ganglia, and divided into varicose terminals in the capsule and intraglandular smooth muscle strands, and gave off further branches, which surrounded acini and accompanied ducts. The labelling for nitric oxide synthase generally coincided with that for vasoactive intestinal peptide within cell bodies and nerves of various types. Cell bodies, nerve trunks and varicose terminals showing labelling for pituitary adenylate cyclase-activating peptide and helospectin were generally also labelled for vasoactive intestinal peptide. The innervation pattern suggests that nitric oxide may act in concert with vasoactive intestinal peptide and related peptides in the control of prostatic smooth muscle activity and secretion.

Keywords

Nitric Oxide Cell Body Acetylcholinesterase Vasoactive Intestinal Peptide Related Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alm, P., Larsson, B., Ekblad, E., Sundler, F. &Andersson, K.-E. (1993) Immunohistochemical localization of peripheral nitric oxide synthase containing nerves using antibodies raised against synthetized C- and N-terminal fragments of a cloned enzyme from rat brain.Acta Physiol. Scand. 148, 421–9.PubMedGoogle Scholar
  2. Andersson, K.-E. (1993) The pharmacology of lower urinary tract smooth muscles and penile erectile tissues.Pharmacol. Rev. 45, 253–308.Google Scholar
  3. Andersson, K.-E. &Persson, K. (1993) Thel-arginine/nitric oxide pathway and non-adrenergic, non-cholinergic relaxation of the lower urinary tract.Gen. Pharmacol. 24, 833–9.PubMedGoogle Scholar
  4. Andersson, K.-E., Garcia-Pascual, A., Forman, A. &Tøttrup, A. (1991) Non-adrenergic, non-cholinergic nerve-mediated relaxation of rabbit urethra is caused by nitric oxide.Acta Physiol. Scand. 141, 133–4.PubMedGoogle Scholar
  5. Arver, S. &Sjöstrand, N. O. (1982) Functions of adrenergic and cholinergic nerves in canine effectors of seminal emission.Acta. Physiol. Scand. 115, 67–77.PubMedGoogle Scholar
  6. Burnett, A. L., Tillman, S. L., Chang, T. S. K., Epstein, J. L., Loewenstein, C. J., Bredt, D. S., Snyder, S. H. &Walsh, P. C. (1993) Immunohistochemical localization of nitric oxide synthase in the autonomic innervation of the human penis.J. Urol. 150, 73–6.PubMedGoogle Scholar
  7. Caine, M. (1986) The present role of alpha-adrenergic blockers in the treatment of benign prostatic hypertrophy.J. Urol. 136, 1–4.PubMedGoogle Scholar
  8. Dail, W. G. (1993) Autonomic innervation of male reproductive genitalia. InThe Autonomic Nervous System. Vol. 6,Nervous Control of the Urogenital System (edited byMaggi, C. A.) pp. 69–101. London: Harwood Academic Publishers.Google Scholar
  9. Eri, L. M. &Tveter, K. J. (1995) α-Blockade in the treatment of symptomatic benign prostatic hyperplasia.J. Urol. 154, 923–34.PubMedGoogle Scholar
  10. Ettinger, S. J. (1975)Textbook of veterinary internal medicine. pp. 1459–92. Philadelphia: W. B. Saunders Co.Google Scholar
  11. Gulbenkian, S., Wharton, J. &Polak, J. M. (1987) The visualization of cardiovascular innervation in the guinea pig using an antiserum to protein gene product 9.5 (PGP 9.5).J. Autonom. Nerv. Syst. 18, 235–47.CrossRefGoogle Scholar
  12. Hedlund, P., Alm, P., Hedlund, H. Larsson, B. &Andersson, K.-E. (1994) Localization and effects of pituitary adenylate cyclase-activating polypeptide (PACAP) in human penile erectile tissues.Acta Physiol. Scand. 150, 103–4.PubMedGoogle Scholar
  13. Hedlund, P., Alm, P., Ekström, P., Fahrenkrug, H., Hannibal, J., Hedlund, H., Larsson, B. &Andersson, K.-E. (1995) Pituitary adenylate cyclase-activating polypeptide, helospectin, and vasoactive intestinal polypeptide in human corpus cavernosum.Br. J. Pharmacol. 116, 2258–66.PubMedGoogle Scholar
  14. Hedlund, H., Andersson, K.-E. &Larsson, B. (1985) Alphaadrenoceptors and muscarinic receptors in the isolated human prostate.J. Urol. 134, 1291–8.PubMedGoogle Scholar
  15. Higgins, J. R. A. &Gosling, J. A. (1989) Studies on the structure and intrinsic innervation of the normal human prostate.Prostate, Supplement2, 5–16.Google Scholar
  16. Jin, J-G., Katsoulis, S., Schmidt, W. E. &Grider, J. R. (1994). Inhibitory transmission in tenia coli mediated by distinct vasoactive intestinal peptide and apamin-sensitive pituitary adenylate cyclase activating peptide receptors.J. Pharmacol. Exp. Ther. 270, 433–9.PubMedGoogle Scholar
  17. Koelle, G. B. &Friedenwald, J. F. (1949) A histochemical method for localizing cholinesterase activity.Proc. Soc. Exp. Biol. Med. 70, 617–22.Google Scholar
  18. Larsson, B., Alm, P., Persson, K. &Andersson, K.-E. (1992) Studies on the localization of some neurotransmitters, nerve markers, and NADPH diaphorase activity in tissues from the pig lower urinary tract.Neurourol. Urodyn,11, 444–5.Google Scholar
  19. Larsson, L.-I., Fahrenkrug, J. &Schaffalitzky de Muckadell, O. B. (1977) Occurrence of nerves containing vasoactive intestinal polypeptide immunoreactivity in the male genital tract.Lefe Sci,21, 503–8.Google Scholar
  20. Lundberg, L-M., Alm, P., Wharton, J. &Polak, J. M. (1988) Protein gene product 9.5 (PGP 9.5). A new neuronal marker visualizing the whole uterine innervation and pregnancy-induced and developmental changes in the guinea-pig.Histochemistry 90, 9–17.PubMedCrossRefGoogle Scholar
  21. Mahklouf, G. M. &Grider, J. R. (1993) Nonadrenergic noncholinergic inhibitory transmitters of the gut.NIPS 8, 195–9.Google Scholar
  22. Matthews, D. A., Nadler, J. V., Lynch, G. S. &Cotman, C. W. (1974) Development of cholinergic innervation in the hippocampal formation of the rat.Dev. Biol. 36, 130–41.PubMedCrossRefGoogle Scholar
  23. Mcneal, J. E. (1988) Normal histology of the prostate.Am. J. Surg. Pathol. 12, 619–33.PubMedGoogle Scholar
  24. Mcneill, D. L., Traugh, J. R., Nevaidya, A. M., Hua, H. T. &Papka, R. E. (1992) Origin and distribution of NADPH-diaphorase-positive neurons and fibers innervating the urinary bladder of the rat.Neurosci. Lett. 147, 33–6.PubMedCrossRefGoogle Scholar
  25. Miller, M. E. (1964)Anatomy of the dog. p. 762. Philadelphia: W. B. Saunders Co.Google Scholar
  26. Moller, K., Zhang, Y.-Z., Håkansson, R., Luts, A., Sjölund, B., Uddman, R. &Sundler, F. (1993) Pituitary adenylate cyclase activating peptide is a sensory neuropeptide: immunohistochemical and immunochemical evidence.Neuroscience 57, 725–32.PubMedCrossRefGoogle Scholar
  27. Naik, N. T. (1963) Technical variations in Koelle's histochemical method for demonstrating cholinesterase activity.Quart. J. Microsc. Sci. 104, 89–100.Google Scholar
  28. Ny, L., Alm, P., Ekström, P., Hannibal, J., Larsson, B. &Andersson, K.-E. (1994) Nitric oxide synthase-containing, peptidecontaining, and acetylcholine-esterase-positive nerves in the cat lower oesophagus.Histochem. J. 26, 721–33.PubMedCrossRefGoogle Scholar
  29. Ny, L., Alm, P., Larsson, B., Ekström, P. &Andersson, K.-E. (1995) The nitric oxide pathway in the cat esophagus; localization of nitric oxide synthase and functional aspects.Am. J. Physiol. 268, G59-G70.PubMedGoogle Scholar
  30. Persson, K., Alm, P., Johansson, K., Larsson, B. &Andersson, K.-E. (1995a) Co-existence of nitrergic, peptidergic and acetylcholine esterase-positive nerves in the pig lower urinary tract.J. Autonom. Nerv. Syst.,56, 105–14.Google Scholar
  31. Persson, K., Alm, P., Johansson, K., Larsson, B. &Andersson, K.-E. (1995b) Sensory innervation of the rat lower urinary tract; a role for nitric oxide?Soc. Neurosci. 21, abstr. p. 1873.Google Scholar
  32. Sasek, C. A., Baldwin, C. &Zigmond, R. E. (1991) Distribution of vasoactive intestinal peptide- and peptide histidine isoleucine amide-like immunoreactive neurons and fibers in the thoracic spinal cord of the rat.Brain Res. 567, 159–64.PubMedCrossRefGoogle Scholar
  33. Takeda, M., Tang, R., Shapiro, E., Lepor, H. &Burnett, A. L. (1994) Pharmacological evidence of nitric oxide synthase (NOS) activity in human and canine prostate.J. Urol. 151, 297A (abstract 280).Google Scholar
  34. Vaalasti, A., Linnoila, I. &Hervonen, A. (1980) Immunohistochemical demonstration of VIP, [Met5]- and [Leu5]-enkephalin immunoreactive nerve fibres in the human prostate and seminal vesicles.Histochemistry 66, 89–98.PubMedCrossRefGoogle Scholar
  35. Vizzard, M. A., Erdman, S. L. &De Groat, W. C. (1993a) Localization of NADPH-diaphorase in pelvic afferent and efferent pathways of the rat.Neurosci. Lett. 152, 72–6.PubMedCrossRefGoogle Scholar
  36. Vizzard, M. A., Erdman, S. L. &De Groat, W. C. (1993b) Localization of NADPH diaphorase in bladder afferent and postganglionic efferent neurons in the rat.J. Autonom. Nerv. Syst. 44, 85–90.CrossRefGoogle Scholar
  37. Vizzard, M. A., Erdman, S. L., Erickson, V. L., Stewart, R. J., Roppolo, J. R. &De Groat, W. C. (1994a) Localization of NADPH diaphorase in the lumbosacral spinal cord and dorsal root ganglia of the cat.J. Comp. Neurol. 339, 62–75.PubMedCrossRefGoogle Scholar
  38. Vizzard, M. A., Erdman, S. L., Erickson, V. L., Stewart, R. J., Roppolo, J. R. &De Groat, W. C. (1994b), Different distribution in neuropathways to urogenital organs.Brain Res. 646, 279–91.PubMedCrossRefGoogle Scholar
  39. Wessendorf, M. W. &Elde, R. P. (1985) Characterization of an immunofluorescence technique for the demonstration of coexisting neuro-transmitters within nerve fibers and terminals.J. Histochem. Cytochem. 33, 984–94.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • P. Hedlund
    • 1
  • B. Larsson
    • 1
  • P. Alm
    • 2
  • K. -E. Andersson
    • 1
  1. 1.Department of Clinical Pharmacology, Lund University HospitalUniversity of LundSweden
  2. 2.Department of Pathology, Lund University HospitalUniversity of LundSweden

Personalised recommendations