Periodica Mathematica Hungarica

, Volume 24, Issue 3, pp 203–207 | Cite as

Concerning my papers “symmetry and ℘- commutativity of topological*-algebras” and “symmetric topological*-algebras”of topological*-algebras” and “symmetric topological*-algebras”

  • M. Fragoulopoulou
Article
  • 17 Downloads

Mathematics subject classification numbers, 1991 Primary

46K05 

Secondary

46H05 

Key words and phrases

Hermitian and symmetric algebras Fréchet Q-algebras ℘- 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.Arahovitis, On various types of barrelledness of a topological algebra,Yokohama Math. J. 32 (1984), 1–13.MR 86d:46004MATHMathSciNetGoogle Scholar
  2. [2]
    R. S. Doran andV. A. Belfi, Characterizations ofC *-algebras, Marcel Dekker, 1986.Google Scholar
  3. [3]
    M.Fragoulopoulou, Symmetry and 207-1-commutativity of topological*-algebras,Period. Math. Hungar. 17 (1986), 185–209.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    M.Fragoulopoulou, Symmetric topological*-algebras,Period. Math. Hungar. 19 (1988), 181–208.MR 90d:46145CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    M.Fragoulopoulou, Automatic continuity of*-morphisms between non-normed topological*-algebras,Pacific J. Math. 147 (1991), 57–70.MATHMathSciNetGoogle Scholar
  6. [6]
    M.Fragoulopoulou, Symmetric topological algebras, II,Atti Sem. Mat. Fis Univ. Modena. 29 (1991), 279–288.Google Scholar
  7. [7]
    H.Jarchow,Locally Convex Spaces, Teubner, Stuttgart, 1981.MR 83h:46008Google Scholar
  8. [8]
    A.Mallios,Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.Google Scholar
  9. [9]
    V.Pták, Banach algebras with involution,Manuscr. Math. 6 (1972), 245–290.MR 45:5764CrossRefMATHGoogle Scholar
  10. [10]
    C. E.Rickart,Banach Algebras, Van Nostrand, Princeton, 1960.MR 22:5903Google Scholar
  11. [11]
    D.Štěrbová, On the fundamental inequality in locally multiplicatively convex algebras, AUPO,Fac. rerum nat. 76 Math.22 (1983), 47–52.MR 86a:46069Google Scholar
  12. [12]
    D.Štěrbová, Generalization of the Shirali-Ford theorem in hermitian locally multiplicatively convex algebras, AUPO,Fac. rerum. nat. 82 Math.24 (1985), 45–50.MR 88a:46056Google Scholar
  13. [13]
    D.Štěrbová, On the radical in hermitian lmc algebras, AUPO,Fac. rerum nat. 85 Math.25 (1986), 19–29.MR 89f:46111Google Scholar
  14. [14]
    Y. Tsertos, Spectral radius andQ-property in topological algebras, (to appear).Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • M. Fragoulopoulou
    • 1
  1. 1.Mathematisches InstitutUniversität MünsterMünsterDetschland

Personalised recommendations