Advertisement

International Journal of Theoretical Physics

, Volume 35, Issue 4, pp 819–837 | Cite as

Constant-cutoff approach to Λ (1405) resonance in the bound-state soliton model

  • Nils Dalarsson
Article

Abstract

We suggest a quantum stabilization method for theSU(2) σ-model, based on the constant-cutoff limit of the cutoff quantization method developed by Balakrishnaet al., which avoids the difficulties with the usual soliton boundary conditions pointed out by Iwasaki and Ohyama. We investigate the baryon numberB = 1 sector of the model and show that after the collective coordinate quantization it admits a stable soliton solution which depends on a single dimensional arbitrary constant. We then study strong and electromagnetic properties of the Λ(1405) hyperon in the bound-state approach to theSU(3)-soliton model for the hyperons, withSU(3)-symmetry breaking. We calculate the strong coupling constantgΛ*NK;, the magnetic moment of Λ*, the mean square radii, and the radiative decay amplitudes. Finally we compare the present results with those obtained using other models and with the available empirical data. We show that there is a general qualitative agreement between our results and the results of other models and available empirical data, except for the Λ*πΣ coupling, which, as in the case of the complete Skyrme model, vanishes in the second-order approximation of the kaon fluctuations used in this work.

Keywords

Soliton Soliton Solution Decay Amplitude Skyrme Model Soliton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, G. S., Nappi, C. R., and Witten, E. (1983).Nuclear Physics B,228, 552.CrossRefADSGoogle Scholar
  2. Balakrishna, B. S., Sanyuk, V., Schechter, J., and Subbaraman, A. (1991).Physical Review D,45, 344.ADSGoogle Scholar
  3. Bhadhuri, R. K. (1988).Models of the Nucleon, Addison-Wesley, Reading, Massachusetts.Google Scholar
  4. Burkhardt, H., and Lowe, J. (1991).Physical Review C,44, 607.CrossRefADSGoogle Scholar
  5. Callan, C. G., and Klebanov, I. (1985).Nuclear Physics B,262, 365.ADSGoogle Scholar
  6. Callan, C. G., Hornbostel, K., and Klebanov, I. (1988).Physics Letters B,202, 269.CrossRefADSGoogle Scholar
  7. Dalarsson, N. (1991a).Modern Physics Letters A,6, 2345.ADSGoogle Scholar
  8. Dalarsson, N. (1991b).Nuclear Physics A,532, 708.CrossRefADSGoogle Scholar
  9. Dalarsson, N. (1992).Nuclear Physics A,536, 573.CrossRefADSGoogle Scholar
  10. Dalarsson, N. (1993).Nuclear Physics A,554, 580.CrossRefADSGoogle Scholar
  11. Dalarsson, N. (1995a).International Journal of Theoretical Physics,34, 81.Google Scholar
  12. Dalarsson, N. (1995b).International Journal of Theoretical Physics,34, 949.Google Scholar
  13. Dalarsson, N. (1995c).International Journal of Theoretical Physics,34, 2129.MATHGoogle Scholar
  14. Darewych, J. W., Horbatsch, M., and Koniuk, R. (1983).Physical Review D,28, 1125.CrossRefADSGoogle Scholar
  15. Gobbi, C., Riska, D. O., and Scoccola, N. N. (1992).Nuclear Physics A,544, 343.CrossRefGoogle Scholar
  16. Holzwarth, G., and Schwesinger, B. (1986).Reports on Progress in Physics,49, 825.CrossRefADSGoogle Scholar
  17. Iwasaki, M., and Ohyama, H. (1989).Physical Review,40, 3125.ADSGoogle Scholar
  18. Jain, P., Schechter, J., and Sorkin, R. (1989).Physical Review D,39, 998.CrossRefADSGoogle Scholar
  19. Kaxiras, E., Moniz, E. J., and Soyeur, M. (1985).Physical Review D,32, 695.CrossRefADSGoogle Scholar
  20. Lee, C. H., Jung, H., Min, D. P., and Rho, M. (1994).Physics Letters B,326, 14.ADSGoogle Scholar
  21. Mignaco, J. A., and Wulck, S. (1989).Physical Review Letters,62, 1449.CrossRefADSMathSciNetGoogle Scholar
  22. Nyman, E. M., and Riska, D. O. (1990).Reports on Progress in Physics,53, 1137.CrossRefADSGoogle Scholar
  23. Rho, M., Riska, D. O., and Scoccola, N. N. (1992).Zeitschrift für Physik A,341, 343.Google Scholar
  24. Schat, C. L., Scoccola, N. N., and Gobbi, C. (1995).Nuclear Physics A,585, 627.CrossRefADSGoogle Scholar
  25. Skyrme, T. H. R. (1961).Proceedings of the Royal Society A,260, 127.MATHMathSciNetGoogle Scholar
  26. Skyrme, T. H. R. (1962).Nuclear Physics,31, 556.CrossRefMathSciNetGoogle Scholar
  27. Umino, Y., and Myhrer, F. (1991).Nuclear Physics A,529, 713.CrossRefADSGoogle Scholar
  28. Witten, E. (1979).Nuclear Physics B,160, 57.CrossRefADSMathSciNetGoogle Scholar
  29. Witten, E. (1983a).Nuclear Physics B,223, 422.ADSMathSciNetGoogle Scholar
  30. Witten, E. (1983b).Nuclear Physics B,223, 433.ADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Nils Dalarsson
    • 1
  1. 1.Royal Institute of TechnologyStockholmSweden

Personalised recommendations