Skip to main content
Log in

Some solvable models of shear dispersion

Einige lösbare Scherdispersionsmodelle

Sur quelques modèles resolubles de la dispersion de cisaillement

  • Published:
Deutsche Hydrografische Zeitschrift Aims and scope Submit manuscript

Summary

A new method is introduced to solve the turbulent diffusion equation with depth-dependent current. Some simple models are derived from it, which especially discuss the influence of nonlinear current profiles, boundaries and depth-dependence of the exchange coefficients.

Zusammenfassung

Eine neue Methode zur Lösung der turbulenten Diffusionsgleichung mit tiefenabhängiger Geschwindigkeit wird entwickelt. Damit werden einige einfache Modelle aufgestellt, die besonders den Einfluß von nichtlinearen Stromprofilen, undurchdringlichen Wänden und Tiefenabhängigkeit der Austauschkoeffizienten darstellen.

Résumé

On présente une nouvelle méthode pour résoudre l'équation de la diffusion de la turbulence avec un courant dépendant de la profondeur. Quelques modèles simples en dérivent, qui représentent surtout l'influence de profils de courants non linéaires, des limites imperméables et de la dépendance à la profondeur des coefficients d'échange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A nj :

exchange coefficient

A ,A A :

element of power series expansion ofA 11 A 22 orA 33

A 1,A 3 :

maximum ofA 11,A 33

A X eff :

effective exchange coefficient (for definition see section 4.2)

a ν :

coefficient of power series expansion of velocityu

b ν :

coefficient of power series expansion of the velocity

C :

calibrated concentration

C N :

approximated calibrated concentration

c ν :

discrete Fourier transform coefficient of the velocity gradient

f :

function (see Appendix 1)

g :

coefficient of the power series expansion off

H :

depth of the channel

h :

half the depth of the channel

i:

\(\sqrt { - 1} \)

j :

index for space co-ordinates (j=1, 2, 3)

K :

maximum of the vertical exchange coefficient (section 4.2)

k, l, m :

indices giving the degree of the moments with respect tox, y, z

M :

total mass

N, N X,N Y,N Z,N α :

boundaries of summation

N BV :

Brunt-Väisälä frequency

n :

index for space co-ordinate (n=1, 2, 3)

P, Q :

dimensionless functions (see section 3.4)

p, q, r :

summation indices (see Appendix 1)

R L :

Lagrangian correlation function

S :

source term

T L(T LX,T LZ):

Lagrangian integral time scale (with respect tox orz)

t :

time

u 0 :

characteristic velocity

u :

velocity component inx direction

u j :

velocity inx j direction

V :

Volume

v :

velocity-component iny direction

W 10 :

wind velocity in 10 m altitude

w :

vertical velocity

w OP :

Okubo-Pritchard diffusion velocity

x :

horizontal co-ordinate (x 1 =x)

x j :

space co-ordinate

y :

horizontal co-ordinate (x 2 =y)

z :

vertical co-ordinate (x 3=z),z positive upwards

α:

power series expansion of the moments with respect to timet

β:

phase

γ:

Hay-Pasquill transformation factor

δ:

Dirac-Delta function

ν, μ, η:

summation indices

ϑ:

arbitrary quantity

σ(σX, σz):

variance (inx, z direction)

σXs :

shear generated part of σX

σXh :

part of σX generated by horizontal turbulence

ω:

angular frequency

{ϑ}:

\(\int\limits_{ - \infty }^\infty {\vartheta CdV} \) ϑCdV weighted mean of ϑ

References

  • Bowden, K.F., 1965: Horizontal mixing in the sea due to a shearing current. J. Fluid Mechanics.21, 83–95.

    Article  Google Scholar 

  • Bronstein, I.N. and K.A. Semandjajew, 1979: Taschenbuch der Mathematik. 19. ed. Moscow: Nauka and Leipzig: Teubner, 860 p.

  • Carter, H. and A. Okubo, 1965: A study of the physical processes of movement and dispersion in the Cape Kennedy area. Final report under the U.S. Atomic Energy Commission. Rep. chesapeake Bay Inst., The Johns Hopkins Univ. No. NYO-2973-1.

  • Elder, J.W., 1959: The dispersion of marked fluid in turbulent shear flow. J. Fluid Mechanics.5, 544–560.

    Article  Google Scholar 

  • Fennel, W., 1979: Theory of turbulent diffusion with arbitrary vertical shear. Beitr. z. Meeresk. No. 42, 17–25.

    Google Scholar 

  • Franz, H.W., 1982: Turbulenz. 87 p. [Unpubl. manuscript; in German].

  • Franz, H.W., 1984: Personal communication. [publication in prep.].

  • Gröbner, W. and N. Hofreiter, 1958: Integraltafel. 2. ed. 2. Teil: Bestimmte Integrale. Wien und Innsbruck: Springer. 204 p.

    Book  Google Scholar 

  • Hay, J.S. and F. Pasquill, 1959: Diffusion from a continuous source in relation to the spectrum and scale of turbulence. Adv. Geophys.6, 345–365.

    Article  CAS  Google Scholar 

  • Kirwan, A.D., G.J. McNally, E. Reyna, and W.J. Merrell 1978: The near-surface circulation of the Eastern North Pacific. J. phys. Oceanogr.8, 937–945.

    Article  Google Scholar 

  • Kullenberg, G., 1971: Vertical diffusion in shallow waters. Tellus.23, 129–135.

    Article  Google Scholar 

  • Kullenberg, G., 1972: Apparent horizontal diffusion in stratified vertical shear flow. Tellus.24, 17–28.

    Article  Google Scholar 

  • Kullenberg, G., 1974: An experimental and theoretical investigation of the turbulent diffusion in the upper layer of the sea. Københavns Universitet, Institut for Fysisk Oceanografi. Rep. No. 25.

  • Mikolajewicz, U., 1984: Betrachtung der Scherdispersion im Meer. Diplomarbeit am Institut für Meereskunde, Universität Hamburg.

  • Neumann, J., 1978: Some observations on the simple exponential function as a Lagrangian velocity correlation function in turbulent diffusion. Atmosph. Environm.12, 1965–1968.

    Article  Google Scholar 

  • Okubo, A., 1962: A review of theoretical models of turbulent diffusion in the sea. Techn. Rep. Chesapeake Bay Inst., The Johns Hopkins Univ. No. 30.

  • Okubo, A., 1967: The effect of shear in an oscillatory current on horizontal diffusion from an instantaneous source. Int. J. Oceanol. & Limnol.1, 194–204.

    Google Scholar 

  • Okubo, A., 1968: Some remarks on the importance of the “shear effect” on horizontal diffusion. J. Oceanogr. Soc. Japan.24, 60–69.

    Article  Google Scholar 

  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res.18, 789–802.

    Google Scholar 

  • Schott, F. and D. Quadfasel, 1979: Lagrangian and Eulerian measurements of horizontal mixing in the Baltic. Tellus.31, 138–144.

    Article  Google Scholar 

  • Taylor, G.I., 1921: Diffusion by continuous movements. Proc. Lond. math. Soc.20, 196–212.

    Google Scholar 

  • Taylor, G.I., 1953: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London (A)219, 186–203.

    CAS  Google Scholar 

  • Young, W.R., P.B. Rhines and C.J.R. Garret, 1982: Shear-flow dispersion, internal waves and horizontal mixing in the ocean. J. phys. Oceanogr.12, 515–527.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikolajewicz, U. Some solvable models of shear dispersion. Deutsche Hydrographische Zeitschrift 39, 1–29 (1986). https://doi.org/10.1007/BF02330520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02330520

Navigation