Skip to main content
Log in

Process zone of polycrystalline alumina

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The fracture process zone of two polycrystalline alumina fracture specimens were analyzed by a hybrid experimental-numerical procedure involving a phase-shifting moiré interferometry and a finite element analysis. The dissipated energy, which was obtained through numerical analysis, in the fracture process zone was found to be the major energy dissipation mechanism in the brittle alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoagland, R.G. andEmbury, J.D., “A Treatment of Inelastic Deformation Round a Crack Tip due to Microcracking,”J. Am. Ceram. Soc.,63,404–410 (1980).

    Google Scholar 

  2. Evans, A.G. andFaber, K.T., “Toughening of Ceramics by Circumferential Microcracking,”J. Am. Ceram. Soc.,64,394–398 (1981).

    Google Scholar 

  3. Evans, A.G. andFaber, K.T., “Crack Growth Resistance of Microcracking in Brittle Materials,”J. Am. Ceram. Soc.,76,255–260 (1984).

    Google Scholar 

  4. Lawn, B., “Microstructure and Toughness,”Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge (1993).

    Google Scholar 

  5. Marshall, D.B. andEvans, A.G., “Failure Mechanics in Ceramicfiber/Ceramic-matrix Composites,”J. Am. Ceram. Soc.,68,225–231 (1985).

    Google Scholar 

  6. Budiansky, B., Hutchinson, J.W., andEvans, A.G., “Matrix Fracture in Fiber-reinforced Ceramics,”J. Mechanics Phys. Solids.,34,167–189 (1986).

    Google Scholar 

  7. Nair, S.V., “Crack-wake Debonding and Toughness in Fiber or Whisker Reinforced Brittle-matrix Composite,”J. Am. Ceram. Soc.,73,2839–2847 (1990).

    Article  Google Scholar 

  8. Mai, Y.W. andLawn, B.R., “Crack Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model,”J. Am. Ceram. Soc.,70,289–294 (1987).

    Article  Google Scholar 

  9. Vekinis, G., Ashby, M.F., andBeaumont, P.W.R., “R-curve Behavior of Al 2 O 3 Ceramics,”Acta Metall. Mat.,38,1151–1162 (1990).

    Google Scholar 

  10. Swanson, S.L., Fairbanks, C.J., Lawn,B.R., andMai, Y.W., “Crack-interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I, Experimental Study of Alumina,”J. Am. Ceram. Soc.,70,279–289 (1987).

    Article  Google Scholar 

  11. Reichl, A. andSteinbrech, R.W., “Determination of Crack Bridging Forces in Alumina,”J. Am. Ceram. Soc.,71,C299-C301 (1988).

    Article  Google Scholar 

  12. Roedel, J., Kelly, J.F., andLawn, B.R., “In Situ Measurements of Bridged Crack Interfaces in Scanning Electron Microscope,”J. Am. Ceram. Soc.,73,3313–3318 (1990).

    Google Scholar 

  13. Hay, J.C. andWhite, K.E., “Grain Boundary Phases and Wake Zone Characterization in Monolithic Alumina,”J. Am. Ceram. Soc.,78,1025–1032 (1995).

    Article  Google Scholar 

  14. White, K.W. andHay, J.C., “Thermoelastic Effects on the R-curve Behavior of Monolithic Alumina,”J. Am. Ceram. Soc.,77,2283–2288 (1994).

    Google Scholar 

  15. Guo, Z.K., Kobayashi, A.S., Hay, J.C., and White, K.W., “Fracture Process Zone of Monolithic Al 2 O 3 ,” Fract. Mech. (1997).

  16. Post, D., “Moiré Interferometry,”Handbook on Experimental Mechanics, 2nd ed., ed. A.S. Kobayashi, VCH, New York, 297–364 (1993).

    Google Scholar 

  17. Creath, K., “Phase-measurement Interferometry Techniques,” Progress in Optics XXVI, ed. E. Wolf, Elsevier Science, 349–391 (1988).

  18. Asundi, A. andYung, K.H., “Phase-shifting and Logical Moiré,”J. Opt. Soc. Am.,A,1591–1600 (1991).

    Google Scholar 

  19. Kobayashi, A.S., “Dynamic Fracture Analysis by Dynamic Finite Element Method—Generation and Propagation Analyses,”Nonlinear and Dynamic Fracture Mechanics, ed. N. Perrone andS.N. Atluri, American Society of Mechanical Engineers, New York,AMD-36,19–36 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, D.K., Kobayashi, A.S. & White, K.W. Process zone of polycrystalline alumina. Experimental Mechanics 39, 20–24 (1999). https://doi.org/10.1007/BF02329296

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02329296

Keywords

Navigation