Skip to main content
Log in

Dielectrophoretic force: A comparison of theory and experiment

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Because of the increasing use of dielectrophoresis in the dielectric characterization and sorting of living cells or their parts, it has become important to establish carefully the theoretical backgrounds for this effect. A comparison with experiment is made of the several versions of the theory for the dielectrophoretic force exerted by nonuniform electric fields upon a neutral object. The three fundamental approaches: the Maxwell-Strattonstress tensor, the effective dipole moment, and the ‘Helmholtz’ energy approach are presented along with the general solution given earlier by Pohl and Crane. These are found to agree closely with experiment in predicting the dielectrophoretic force upon various rods hung in specially shaped (isomotive) field distributions. On the other hand, an alternative formulation based upon a debatable assignment of fields local to the dipoles gave a good fit to the experimental data only for materials of very low permittivity, and fitted poorly in the case of highly polarizable materials.

An improved derivation of the theory for stable dielectrophoretic levitation is also presented. This phenomenon is of particular interest in that it is based upon an apparent violation of the Earnshaw's theorem, and is useful in the study of the dielectric properties of individual living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Korteweg, Wied. Ann. der Physik und Chemie9, 48–61 (1880).

    MATH  Google Scholar 

  2. H. von Helmholtz, ibid13. 385 (1881).

    MATH  Google Scholar 

  3. M. Abraham and R. Becker. 1932.Classical Electricity and Magnetism, Blackie Ltd., London.

    Google Scholar 

  4. J. A. Stratton, 1941,Electromagnetic Theory, McGraw-Hill Book Co., N.Y.

    Google Scholar 

  5. E. Durand, 1953,Electrostatique et Magnetostatique, Masson, Paris.

    Google Scholar 

  6. J. Larmor, Phil. Trans. Roy. Soc. A190, 280 (1897).

    Google Scholar 

  7. G. H. Livens, Phil. Mag.32, 162 (1916).

    Google Scholar 

  8. R. Cade, Proc. Phys. Soc. A,64, 665 (1951).

    Article  ADS  Google Scholar 

  9. S. S. Hakim, Inst. Elec. Engrs., Monograph 475M, (1961).

  10. S. S. Hakim and J. B. Higham, Proc. Phys. Soc.80, 190 (1962).

    Article  Google Scholar 

  11. H. A. Pohl, J. Appl. Phys.22, 869 (1951).

    Article  Google Scholar 

  12. A. R. von Hippel, Dielectrics and Waves, John Wiley & Sons, N.Y., 1954, p. 39.

    Google Scholar 

  13. H. A. Pohl, J. Appl. Phys.29, 1182 (1958).

    Article  Google Scholar 

  14. L. D. Sher, Nature220, 695 (1968).

    Google Scholar 

  15. H. A. Pohl and J. S. Crane, J. Theor. Biol.37, 1 (1972).

    Article  Google Scholar 

  16. J. S. Crane and H. A. Pohl, ibid.37, 15 (1972).

    Article  Google Scholar 

  17. M. Javid and P. M. Brown,Field Analysis and Electromagnetics, McGraw-Hill, N.Y., 1963.

    Google Scholar 

  18. J. Neufeld, Phys. Rev.152, 708 (1966).

    Article  ADS  Google Scholar 

  19. P. Lorrain and D. Corson,Electromagnetic Fields and Waves, W. H. Freeman and Co., San Francisco, 1970, p. 135.

    Google Scholar 

  20. O. Jefimenko,Electricity and Magnetism, Appleton-Century-Crofts, N.Y., 1966.

    Google Scholar 

  21. L. D. Landau and E. M. Lifschitz,Electrodynamics of Continuous Media, Pergamon Press, New York, 1960.

    Google Scholar 

  22. J. Neufeld, Il Nuovo Cimento, LXVB,33 (1970); LXVIB,51 (1970).

  23. J. Neufeld, Int. J. Electronics27, 301 (1969).

    Google Scholar 

  24. G. Schwartz, J. Chem. Phys.39, 2387 (1963).

    Google Scholar 

  25. J. S. Crane and H. A. Pohl, J. Electrostatics5, 11 (1978).

    Article  Google Scholar 

  26. T. B. Jones and G. W. Bliss, J. Appl. Phys.48, 1419 (1977).

    Google Scholar 

  27. W. F. Brown, Jr., Amer. J. Phys.19, 333 (1951).

    MATH  Google Scholar 

  28. H. Greinacher, Helv. Phys. Acta.21, 261 (1948).

    Google Scholar 

  29. R. M. Fano, L. J. Chu, and R. B. Adler,Electromagnetic Fields, Energy, and Forces, p. 356, John Wiley & Sons, New York, 1960.

    Google Scholar 

  30. J. A. Reynolds and J. M. Hough, Proc. Phys. Soc.B70, 769 (1957).

    ADS  Google Scholar 

  31. H. A. Pohl and R. Pethig, J. Phys., E,10, 190 (1977).

    ADS  Google Scholar 

  32. D. S. Parmar and A. K. Jalaluddin, Jap. J. Appl. Phys.13, 793 (1974).

    Article  Google Scholar 

  33. J. H. Winckler,Essai sur la Nature, Effets et les Causes de l'Electricite', Vol. 1., Sebastian Jorry, Paris, 1748.

    Google Scholar 

  34. J. C. Maxwell,A Treatise on Electricity and Magnetism, (Dover, New York, 1954) Article 116.

    Google Scholar 

  35. L. Epstein, Amer. J. Phys.33, 406 (1975).

    Google Scholar 

  36. H. A. Pohl,Dielectrophoresis, Cambridge University Press, 1978.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohl, H.A., Pollock, K. & Crane, J.S. Dielectrophoretic force: A comparison of theory and experiment. J Biol Phys 6, 133–160 (1978). https://doi.org/10.1007/BF02328936

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02328936

Keywords

Navigation