Advertisement

Journal of Automated Reasoning

, Volume 2, Issue 3, pp 277–281 | Cite as

Unification under associativity and idempotence is of type nullary

  • Manfred Schmidt-Schauss
Article

Abstract

It is shown, that there exist a unification problem〈s=t〉 AI , for which the set of solutions under associativity and idempotence is not empty. But\(\mu U\sum _{Al} \left( {s,t} \right)\), the complete and minimal subset of this set of solutions does not exist, i.e.A+I is of type nullary. This is the first known standard first order theory with this unpleasant feature.

Key words

Unification Equational Theories Idempotent Semigroups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fages, F and Huet, G., ‘Complete sets of unifiers and matchers in equational theories’, CAAP 83,Trees in Algebra and Programming, (eds. G. Ausiello and M. Protasi), Springer Verlag, LNCS 159, pp. 250–220, (1983).Google Scholar
  2. Gould, W. E., A matching procedure for ω-order logic,Scientific Report No. 4, Air Force Cambridge Research Labs., (1966).Google Scholar
  3. Howie, J. M.,An Introduction to Semigroup Theory, Academic Press, (1976).Google Scholar
  4. Huet, G.,Resolution d'equations dnans des languages d'ordere 1,2, ... w, These d'Etat, Univ. de Paris, VII, (1976).Google Scholar
  5. Siekmann, J. H., Universal unification, Proc. of the 7th CADE, (ed R.E. Shostak), Springer Verlag LNCS 170, pp. 1–42, (1984).Google Scholar
  6. SiekmannJ. and SzabóP.A Noetherian and Confluent Rewrite System for Idempotent Semigroups Forum Vol. 25, pp. 83–110, Springer Verlag New York, (1982).Google Scholar
  7. Szabó, P.,Theory of First Order Unification, (in German, thesis) Univ. Karlsruhe, 1982.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Manfred Schmidt-Schauss
    • 1
  1. 1.Universität KaiserslauternKaiserslauternGermany

Personalised recommendations