Antonie van Leeuwenhoek

, Volume 38, Issue 1, pp 351–356 | Cite as

Chemical composition of a purified membrane fraction fromSarcina flava in relation to growth phase

  • D. Thirkell
  • M. I. S. Hunter


The effect of age of a culture ofSarcina flava on the chemical composition of the total membrane fraction has been investigated. Both protein and lipid contents decrease with age, but there is little variation in carbohydrate content. The apparent decreased lipid content may be a reflection of the increased binding of lipid to protein with age. The main findings from the amino acid analysis of three membrane preparations are reported. The major carbohydrates present in the membrane are, in order of decreasing concentration, mannose, glucose, ribose and rhamnose.


Glucose Lipid Carbohydrate Growth Phase Lipid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, D. G., Rutberg, L. andSamuelsson, B. 1967. The chemical composition of the cytoplasmic membrane ofBacillus subtilis. - Eur. J. Biochem.2: 448–453.PubMedGoogle Scholar
  2. Bligh, E. G. andDyer, W. J. 1959. A rapid method of total lipid extraction and purification. - Can. J. Biochem. Physiol.37: 911–917.PubMedGoogle Scholar
  3. Brown, R. H. andStevenson, J. 1971. Variation in the composition of a purified membrane fraction fromHalobacterium salinarium with the phase of growth. - Antonie van Leeuwenhoek37: 89–99.PubMedGoogle Scholar
  4. Exterkate, F. A., Vrensen, G. F. J. andVeerkamp, J. H. 1970. Biochemical changes inBifidobacterium bifidum var.pennsylvanicus after cell wall inhibition. III. Morphological structure and osmotic properties of the protoplasts and membrane composition. - Biochim. Biophys. Acta219: 141–154.PubMedGoogle Scholar
  5. Fiske, C. H. andSubbarow, Y. 1925. The colorimetric determination of phosphorus. - J. Biol. Chem.66: 375–400.Google Scholar
  6. Folch, J., Lees, M. andSloane-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. - J. Biol. Chem.226: 497–509.PubMedGoogle Scholar
  7. Ghosh, B. K. andCarroll, K. K. 1968. Isolation, composition, and structure of membrane ofListeria monocytogenes. - J. Bacteriol.95: 688–699.PubMedGoogle Scholar
  8. Hodge, J. E. andHofreiter, B. T. 1962. Determination of reducing sugars and carbohydrates, p. 380–394.In R. L. Whistler and M. L. Wolfrom, [eds.], Methods in carbohydrate chemistry, Vol. I. - Academic Press, London.Google Scholar
  9. Hunter, M. I. S. andThirkell, D. 1971. Variation in fatty acid composition ofS. flava membrane lipid with the age of the bacterial culture. - J. Gen. Microbiol.65: 115–118.PubMedGoogle Scholar
  10. Huston, C. K. andAlbro, P. W. 1964. Lipids ofSarcina lutea. I. Fatty acid composition of the extractable lipids. - J. Bacteriol.88: 425–432.PubMedGoogle Scholar
  11. Itzhaki, R. F. andGill, D. M. 1964. A micro-biuret method for estimating proteins. - Anal. Biochem.9: 401–410.CrossRefPubMedGoogle Scholar
  12. Kunsman, J. E. 1970. Characterization of the lipids ofButyrivibrio fibrisolvens. - J. Bacteriol.103: 104–110.PubMedGoogle Scholar
  13. Letters, R. 1966. Phospholipids of yeast. II. Extraction, isolation and characterisation of yeast phospholipids. - Biochim. Biophys. Acta116: 489–499.PubMedGoogle Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L. andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. - J. Biol. Chem.193: 265–275.PubMedGoogle Scholar
  15. Macfarlane, M. G. 1961. Composition of lipid from protoplast membranes and whole cells ofM. lysodeikticus. - Biochem. J.79: 4P-5P.Google Scholar
  16. Moore, S. andStein, W. H. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. - J. Biol. Chem.211: 907–913.PubMedGoogle Scholar
  17. Pridham, J. B. 1956. Determination of sugars on paper chromatograms withp-anisidine hydrochloride. - Analyt. Chem.28: 1967–1968.Google Scholar
  18. Salton, M. R. J. 1967. Structure and composition of bacterial membranes, p. 279–288.In H. Peeters, [ed.], Protides of biological fluids, Proc. 15th Colloqium, Bruges. - Elsevier Publ. Co., Amsterdam.Google Scholar
  19. Salton, M. R. J. andFreer, J. H. 1965. Composition of the membranes isolated from several gram-positive bacteria. - Biochim. Biophys. Acta107: 531–538.PubMedGoogle Scholar
  20. Scott, T. A., Jr. andMelvin, E. H. 1953. Determination of dextran with anthrone. - Anal. Chem.25: 1656–1661.Google Scholar
  21. Schneider, W. C. 1957. Determination of nucleic acids in tissues by pentose analysis, p. 680–684.In S. P. Colowick and N. O. Kaplan, [eds.], Methods in enzymology, Vol. 3. - Academic Press, London.Google Scholar
  22. Sweeley, C. C., Bentley, R., Makita, M. andWells, W. W. 1963. Gas-liquid chromotography of trimethylsilyl derivatives of sugars and related substances. - J. Amer. Chem. Soc.85: 2497–2507.CrossRefGoogle Scholar
  23. Thirkell, D., Strang, R. H. C. andCarstairs, E. A. 1965. Experiments withSarcina flava. I. Relationships of time and temperature with growth and pigmentation. - Phytochemistry4: 155–159.CrossRefGoogle Scholar
  24. Thirkell, D. andHunter, M. I. S. 1969. The polar carotenoid fraction fromSarcina flava. - J. Gen. Microbiol.58: 293–299.PubMedGoogle Scholar
  25. Ward, J. B. andPerkins, H. R. 1968. The chemical composition of the membranes of protoplasts and L-forms ofStaphylococcus aureus. - Biochem. J.106: 391–400.PubMedGoogle Scholar

Copyright information

© Swets & Zeitlinger 1972

Authors and Affiliations

  • D. Thirkell
    • 1
  • M. I. S. Hunter
    • 1
  1. 1.Department of BiochemistryUniversity of St. AndrewsSt. AndrewsScotland

Personalised recommendations