Antonie van Leeuwenhoek

, Volume 38, Issue 1, pp 105–120 | Cite as

DNA Base composition of soil arthrobacters and other coryneforms from cheese and sea fish

  • W. H. J. Crombach
Article

Abstract

The DNA base composition of 34 coryneforms isolated from different sources, and those of 20 named cultures of the generaArthrobacter, Brevibacterium,Mycobacterium, Corynebacterium andNocardia has been determined.

A preliminary study of the morphological and physiological characteristics of the new isolates, and some named cultures, led to a division into three groups:
  1. 1)

    Soil coryneforms identified as arthrobacters, completed with theArthrobacter globiformis strains ATCC 8602 and 8010.

     
  2. 2)

    Orange coryneforms and one white isolate from cheese, and orange coryneforms including one yellow isolate from sea fish, completed with twoBrevibacterium linens strains ATCC 9174 and 9175.

     
  3. 3)

    Non-orange cheese coryneforms.

     

DNA base composition of group (1) ranges from 65.3 to 67.0 molar % GC, suggesting that this group is genetically homogeneous. % GC values of group (2) range from 62.6 to 64.0 except for one isolate (65.6), suggesting that this group is also homogeneous. DNA base composition of group (3) ranges from 65.5 to 66.9 % GC, except for three isolates (56.5, 60.1, 60.6). It is concluded that as far as their % GC is concerned, the strains of group (3), except the threem entioned ones, may be closely related to the arthrobacters of group (1). The strains of group (2) are probably less closely related to those of the groups (1) and (3).

Keywords

Physiological Characteristic Base Composition Strain ATCC White Isolate Yellow Isolate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S., Takayama, K. andKinoshita, S. 1967. Taxonomical studies on glutamic acidproducing bacteria. - J. Gen. Appl. Microbiol.13: 279–301.Google Scholar
  2. Breed, R. S., Murray, E. G. D., Smith, N. R., [eds.] 1957. Bergey's Manual of determinative Bacteriology, 7th ed. The Williams and Wilkins Company, Baltimore.Google Scholar
  3. Burton, K. 1956. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. - Biochem. J.62: 315–323.PubMedGoogle Scholar
  4. Ceriotti, G. 1955. Determination of nucleic acids in animal tissues. - J. Biol. Chem.214: 59–70.PubMedGoogle Scholar
  5. Cox, S. T., Jr. andEagon, R. G. 1968. Action of ethylenediaminetetraacetic acid, tris (hydroxymethyl)aminomethane, and lysozyme on cell walls ofPseudomonas aeruginosa. - Can. J. Microbiol.14: 913–922.PubMedGoogle Scholar
  6. Cummins, C. S. 1962. Chemical composition and antigenic structure of cell walls ofCorynebacterium, Mycobacterium, Nocardia, Actinomyces andArthrobacter. - J. Gen. Microbiol.28: 35–50.PubMedGoogle Scholar
  7. Cummins, C. S. andHarris, H. 1956. The chemical composition of the cell wall in some Grampositive bacteria and its possible value as a taxonomic character. - J. Gen. Microbiol.14: 583–600.PubMedGoogle Scholar
  8. Cummins, C. S. andHarris, H. 1958. Studies on the cell-wall composition and taxonomy of Actinomycetales and related groups. - J. Gen. Microbiol.18: 173–189.PubMedGoogle Scholar
  9. Cummins, C. S. andHarris, H. 1959. Taxonomic position ofArthrobacter. - Nature (London)184: 831–832.Google Scholar
  10. Davis, G. H. G. andNewton, K. G. 1969. Numerical taxonomy of some named coryneform bacteria. - J. Gen. Microbiol.56: 195–214.PubMedGoogle Scholar
  11. De Ley, J. 1969. Compositional nucleotide distribution and the theoretical prediction of homology in bacterial DNA.- J. Theoret. Biol.22: 89–116.Google Scholar
  12. De Ley, J. 1970. Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. - J. Bacteriol.101: 738–754.PubMedGoogle Scholar
  13. De Ley, J. andVan Muylem, J. 1963. Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. - Antonie van Leeuwenhoek29: 344–358.Google Scholar
  14. Doty, P., McGill, B. B. andRice, S. A. 1958. The properties of sonic fragments of deoxyribose nucleic acid. - Proc. Nat. Acad. Sci. Wash.44: 432–438.Google Scholar
  15. El-Erian, A. F. M. 1969. Bacteriological studies on Limburger cheese. - Thesis, Wageningen.Google Scholar
  16. Goodfellow, M. 1967. Numerical taxonomy of some named bacterial cultures. - Can. J. Microbiol.13: 1365–1374.PubMedGoogle Scholar
  17. Gordon, R. E. 1966. Some strains in search of a genus-Corynebaclerium, Mycobacterium, Nocardia or what? - J. Gen. Microbiol.43: 329–343.PubMedGoogle Scholar
  18. Harrington, B. J. 1966. A numerical taxonomical study of some corynebacteria and related organisms. - J. Gen. Microbiol.45: 31–40.Google Scholar
  19. Hastings, J. R. B. andKirby, K. S. 1966. The nucleic acids ofDrosophila melanogaster. - Biochem. J.100: 532–539.PubMedGoogle Scholar
  20. Heberlein, G. T., De Ley, J. andTijtgat, R. 1967. Deoxyribonucleic acid homology and taxonomy ofAgrobacterium, Rhizobium andChromobacterium. - J. Bacteriol.94: 116–224.PubMedGoogle Scholar
  21. Hester, D. J. andWeeks, O. B. 1969. Taxonometric study of the genusBrevibacterium Breed. - Bacteriol. Proc.1969: 19.Google Scholar
  22. Keddie, R. M., Leask, B. G. S. andGrainger, J. M. 1966. A comparison of coryneform bacteria from soil and herbage: cell wall composition and nutrition. - J. Appl. Bacteriol.29: 17–43.Google Scholar
  23. Komagata, K., Yamada, K. andOgawa, H. 1969. Taxonomic studies on coryneform bacteria, I. Division of bacterial cells. - J. Gen. Appl. Microbiol.15: 243–259.Google Scholar
  24. Loeb, J. E. etChauveau, J. 1969. Préparation de DNA par filtration sur gel d'agarose. - Biochim. Biophys. Acta182: 225–234.PubMedGoogle Scholar
  25. Marmur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. - J. Mol. Biol.3: 208–218.Google Scholar
  26. Marmur, J. andDoty, P. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. - J. Mol. Biol.5: 109–118.PubMedGoogle Scholar
  27. Masuo, E., Nakagawa, T. 1969a. Numerical classification of bacteria. Part II. Computer analysis of “coryneform bacteria” (2). Comparison of group-formations obtained on two different methods of scoring data. - Agr. Biol. Chem.33: 1124–1133.Google Scholar
  28. Masuo, E., Nakagawa, T. 1969b. Numerical classification of bacteria. Part. III. Computer analysis of “coryneform bacteria” (3). Classification based on DNA base compositions. - Agr. Biol. Chem.33: 1570–1576.Google Scholar
  29. Mulder, E. G. etAntheunisse, J. 1963. Morphologie, physiologie et écologie desArthrobacter.- Ann. Inst. Pasteur105: 46–74.Google Scholar
  30. Mulder, E. G., Adamse, A. D., Antheunisse, J., Deinema, M. H., Woldendorp, J. W. andZevenhuizen, L. P. T. M. 1966. The relationship betweenBrevibacterium linens and bacteria of the genusArthrobacter.- J. Appl. Bacteriol.29: 44–71.Google Scholar
  31. van der Plaat, J. B. 1969. Mutanten met veranderde DNA-samenstelling, een kritisch onderzoek. - Thesis, Delft.Google Scholar
  32. Ramachandran, L. K. andFraenkel-Conrat, H. 1958. The estimation of protein contamination in ribonucleic acid.- Arch. Biochem. Biophys.74: 224–228.CrossRefPubMedGoogle Scholar
  33. Skyring, G. W. andQuadling, C. 1969. Taxonomy of arthrobacter-coryneform soil isolates in relation to named cultures. - Bacteriol. Proc.1969: 19.Google Scholar
  34. Yamada, K. andKomagata, K. 1970a. Taxonomic studies on coryneform bacteria. II. Principal amino acids in the cell wall and their taxonomic significance. - J. Gen. Appl. Microbiol.16: 103–113.Google Scholar
  35. Yamada, K. andKomagata, K. 1970b. Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. - J. Gen. Appl. Microbiol.16: 215–224.Google Scholar

Copyright information

© Swets & Zeitlinger 1972

Authors and Affiliations

  • W. H. J. Crombach
    • 1
  1. 1.Laboratory of MicrobiologyAgricultural UniversityWageningenthe Netherlands

Personalised recommendations