Periodica Mathematica Hungarica

, Volume 22, Issue 2, pp 115–119 | Cite as

The painlevé property and coordinate transformations

  • M. F. El-Sabbagh


In this paper, the question of conserving the Painlevé property of partial differential equations via coordinate transformations between partial differential equations is studied. Also, the effects of some types of transformations, like ordinary Bäcklund as well as auto-Bäcklund transformations of partial differential equations, are shown as well. Some features and comments, concerning higher order prolongations of these transformations as well as of the partial differential equations themselves, are given.


Differential Equation Partial Differential Equation Coordinate Transformation Order Prolongation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Carmpin, L. Hodgkin, P. McCarthy andD. Robinson, 2-manifolds of constant curvatures, 3-parameter isometry groups and Bäcklund transformations, preprint.Google Scholar
  2. [2]
    D. V. Chudnovsky andM. Tabor,Phys. Lett.,97A, 7(1983).Google Scholar
  3. [3]
    P. A.Clarkson,Phys. Lett.,109 A, 5(1985) 205–208.MathSciNetGoogle Scholar
  4. [4]
    J. Gibbon, P. Radmore, M. Tabor andD. Wood,Stud. Appl. Math.,72 (1985).Google Scholar
  5. [5]
    M. F.El-Sabbagh,Il Nuovo Cimento,101 B, 6(1988), 697–702.MathSciNetGoogle Scholar
  6. [6]
    M. F. El-Sabbach, Painlevé property, complete integrability and the soliton condition, submitted.Google Scholar
  7. [7]
    M. F. El-Sabbagh andA. H. Khater, preprint.Google Scholar
  8. [8]
    M. F. El-Sabbagh, Ph. D. thesis, Durham University, England (1981).Google Scholar
  9. [9]
    M. F. El-Sabbagh,King Abdulaziz University Journal: Science (1988).Google Scholar
  10. [10]
    J. B.McLeod and P. J.Olver,Siam J. Math. Anal., Vol.4, No.3 (1983), 488.MathSciNetGoogle Scholar
  11. [11]
    A. C.Newell, M.Tabor and Y. B.Zeng,Physica 29 D (1987) 1–68.MathSciNetGoogle Scholar
  12. [12]
    F. Pirani, D. Robinson andW. Shadwick,Stud. Apll. Math.,1 (1979).Google Scholar
  13. [13]
    C. Rogers andW. Shadwick, Bäcklund Transformations and their Applications, (1983), Academic Press.Google Scholar
  14. [14]
    W. H.Steeb, M.Kloke and B. M.Speiker,Z. Natur,38a (1983) 1054.Google Scholar
  15. [15]
    K. M.Tamizhmani and M.Lakshmanan,J. Math. Phys.,27,9 (1986) 2257–2258.CrossRefMathSciNetGoogle Scholar
  16. [16]
    R. S.Ward,Phys. Lett.,102 A,7 (1984) 279.Google Scholar
  17. [17]
    J.Weiss, M.Tabor and G.Carneval,J. Math. Phys. 24,3 (1983) 522.CrossRefMathSciNetGoogle Scholar
  18. [18]
    J.Weiss,J. Math. Phys.,24,6 (1983) 1405–1413.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    J.Weiss,J. Math. Phys.,25,4 (1984) 2226–2235.zbMATHMathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • M. F. El-Sabbagh
    • 1
  1. 1.Mathematics Department Faculty of ScienceMinia UniversityEgypt

Personalised recommendations