Skip to main content
Log in

The shifting roles of computers, experiments and analysis in applied mechanics

Paper reflects the viewpoint and activities of a group of six research engineers working on industrial problems at the boundary of research and advanced development in machines and structures

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The shifting roles of computers, mathematical analysis, and experimentation will be examined by means of examples and case studies involving finite-diference and finite-element computer methods, problems of wave propagation, structural behavior in the plastic range, etc. These examples show how one small industrial group has attempted to cope with such problems in a rapidly changing technological setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyris, J. H., “Impact of Computers on Engineering Science,”Aero. Jnl. of Royal Soc.,74,Part I,13–41,Part II, 111–127 (1970).

    Google Scholar 

  2. Zienkiewicz, O. C., “The Finite Element Method: From Intuition to Generality,”Appl. Mech. Rev.,23 (3)249–256 (1970).

    Google Scholar 

  3. Vitkovitch, D., ed., Field Analysis, Experimental and Computational Methods, D. Van Nostrand, Princeton, N. J., (1966).

    Google Scholar 

  4. Mindlin, R. D. andSalvadori, M. G., “Analogiesin Handbook of Experimental Stress Analysis, M. Hetenyi, ed., J. Wiley, N. Y., 700–827 (1950).

    Google Scholar 

  5. Sokolnikoff, I. S., Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, N. Y. (1956).

    Google Scholar 

  6. Higgins, T. J., “A Comprehensive Review of Saint-Venant's Torsion Problem,”Am. Jnl. Phys.,10,248–259 (1942).

    MATH  MathSciNet  Google Scholar 

  7. Higgins, T. J., “The Approximate Mathematical Methods of Applied Physics as Exemplified by Application to Saint Venant's Torsion Problem,”Jnl. Appl. Phys.,14,469–480 (1943).

    MathSciNet  Google Scholar 

  8. Todhunter, I. and Pearson, K., A History of the Theory of Elasticity, Vol. II, Part II, Cambridge U. Press (1893).

  9. Prager, W. andHodge, P. G., Jr, Theory of Perfectly Plastic Solids, J. Wiley, N. Y., Chap. 3, (1950).

    Google Scholar 

  10. Vitkovitch, D., “The Electrolytic Tank Analoguein Field Analysis, D. Vitkovitch, ed., D. Van Nostrand, Princeton, N. J., 205–264 (1966).

    Google Scholar 

  11. Raby, K. V., “Conductive-Sheet Analoguesin Field Analysis, D. Vitkovitch, ed., D. Van Nostrand, Princeton, N. J., 187–204 (1966).

    Google Scholar 

  12. Ross, D. S. andQureshi, I. H., “Boundary Value Problems in Two-Dimensional Elasticity by Conducting Paper Analogue,”Jnl. Sci. Instrum. 40,513–517 (1963).

    Google Scholar 

  13. Nadai, A., Theory of Flow and Fracture of Solids, McGraw-Hill, N. Y., Chap. 35 (1950).

    Google Scholar 

  14. Redshaw, S. C., “Electrical Analogue Methods of Stress Analysisin Stress Analysis, O. C. Zienkiewicz andG. S. Holister, eds., J. Wiley, New York, 346–384 (1965).

    Google Scholar 

  15. Herrmann, L., “Elastic Torsional Analysis of Irregular Shapes,”Inl. Engrg. Mechanics Div., Proc. ASCE, EM 6, 11–19 (1965).

    Google Scholar 

  16. Zienkiewicz, O. C. andParekh, C. J., “Transient Field Problems,” Two-Dimensional and Three-Dimensional Analysis by Isoparametric Finite Elements,”Intnatl. Jnl. for Num. Meth.,2,61–70 (1970).

    Google Scholar 

  17. Forsythe, G. E. andWasow, W. R., Finite Difference Methods for Partial Differential Equations, Wiley N. Y. (1960).

    Google Scholar 

  18. Hodge, P. G., Jr., Herakovich, C. T. andStout, R. B., “On Numerical Comparisons in Elastic-Plastic Torsion,”Jnl. of Appl. Mech., Trans. ASME, Series E 35, 3, 454–459 (Sept.1968).

    Google Scholar 

  19. Stout, R. B. andHodge, P. G., Jr., “Elastic/Plastic Torsion of Hollow CylindersIntnatl. Jnl. Mech. Sci.,12,91–108 (1970).

    Google Scholar 

  20. Waner, N. S. andSoroka, W. W., “Stress Concentration for Structural Angles in Torsion by the Conducting Sheet Analogy,”Proc. of SESA, XI (1),19–26 (1953).

    Google Scholar 

  21. Boiten, R. G., Discussion of paper by Waner and Soroka in Proc. SESA, XI (1),19–26, Disc. on 27–30, (1953).

    Google Scholar 

  22. Przemieniecki, J. S. et al, eds., Matrix Methods in Structural Analysis, Proc. of Conf. at Wright-Patterson AFB, Ohio Rept. AFFDL-TR-66-80, Defense Doc. Center No. AD 646300, (1966).

  23. Przemieniecki, J. J. et al (eds.), Proc. of 2nd Air Force Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, Ohio, Rept. AFFDL-TR-68-150, (1969).

  24. Griffin, D. S. andVarga, R. S., “Numerical Solution of Plane Elasticity Problems,”Jnl. Soc. Ind. Appl. Math. 11, (4),1046–1062 (1963).

    MathSciNet  Google Scholar 

  25. Griffin, D. S. andKellogg, R. B., “A Numerical Solution for Axially Symmetrical and Plane Elasticity Problems,”Int. Jnl. Solids & Structures,3,781–794 (1967).

    Google Scholar 

  26. Przemieniecki, J. J. et al. (eds.),Proc. of 2nd Air Force Conf. and Continuum Mechanics, McGraw-Hill Publ. Co. Ltd., London (1967).

    Google Scholar 

  27. Przemieniecki, J. S., Theory of Matrix Structural Analysis, McGraw-Hill, N. Y. (1968).

  28. Clough, R. W., “The Finite Element Method in Structural Mechanicsin Stress Analysis, eds., O. C. Zienkiewicz andG. S. Holister, John Wiley, Ltd., London, 85–119 (1965).

    Google Scholar 

  29. Wilson, E. L., “Structural Analysis of Axisymmetric Solids,”AIAA Journal,3, (12),2269–2274 (1965).

    Google Scholar 

  30. Becker, E. B. andBrisbane, J. J., “Application of the Finite Element Method to Stress Analysis of Solid Propellant Rocket Grains,”Report S-76, Rohm & Haas Co. Avail. from Defense Documentation Center, Washington, D. C. Repts. No. AD-4744031, AD-476515, AD-476735 (1965).

    Google Scholar 

  31. Paul, B. and Gangal, M. D., “Why Compressive Loads on Drill Bits Produce Tensile Splitting in Rock,” Paper No. SP2392, Soc. of Petroleum Engrs. of AIME (1969).

  32. Timoshenko, S. andGoodier, J. N., Theory of Elasticity, McGraw-Hill, N. Y. 85 (1950).

    Google Scholar 

  33. Gangal, M. D. and Paul, B., “Stress Analysis of a Pressurized Cylindrical Bore in a Rectangular Block”, ASME Paper No. 69-WA/PVP-3, (1969).

  34. Institute of Mechanical Engineers, Computers in Internal Combustion Engine Design.Inst. of Mech. Engrs. Proc. 1967–1968,182, (36),London (1968).

  35. Wilson, E. L. andNickell, R. E., “Application of the Finite Element Method to Heat Conduction Analysis,”Nuclear Engineering and Design,4,North-Holland Publ. Co.,Amsterdam 276–286 (1966).

    Google Scholar 

  36. Marcal, P. V. andKing, I. P., “Elastic-Plastic Analysis of Two-Dimensional Stress Systems by the Finite Element Method,”Int. Jnl. Mech. Sci.,9,143–155 (1967).

    Google Scholar 

  37. Zienkiewicz, O. C., Valliappan, S. andKing, I. P., “Elasto-Plastic Solutions of Engineering Problems. Initial Stress Element Approach,”Intnatl. Jnl. Num. Meth. in Eng. 1,75–100 (1969).

    Google Scholar 

  38. Hodge, P. G., Jr., Plastic Methods of Structures, McGraw-Hill, N. Y. (1959).

    Google Scholar 

  39. Wilson, E. L., “A Computer Program for the Dynamic Stress Analysis of Underground Structures,”Rept 68-1, Structural Engrg. Lab. U. of Calif., Berkeley (1968).

    Google Scholar 

  40. Constantino, C. J., “Finite Element Approach to Stress Wave Problems,”Jnl. Eng. Mech. Div. ASCE,93 (EM2),153–176 (1967).

    Google Scholar 

  41. Fu, C. C. andPaul, B., “Energy Transfer Through Chains of Impacting Rods,”Intnatl. Jnl. Num. Meth. in Engr. 2,363–385 (1970).

    Google Scholar 

  42. Gallagher, R. H., “Analysis of Plate and Shell Structures,” in Application of Finite Element Methods in Civil Engineering, Proc. of a Symp. at Vanderbilt Univ., ASCE, 155–205 (1969).

  43. Bushnell, D., “Computer Analysis of Shell StructuresASME Paper 69-WA/PV-13, ASME, N.Y. (1969).

    Google Scholar 

  44. Argyris, J. H., “Continua and Discontinua,” in Proc. Conf. on Matrix Meth. in Structural Mech., J. S. Przemieniecki, et al, eds., Wright-Patterson AFB, Ohio, Rept. AFFDL-TR-66-80 11-189, (1965).

  45. Zienkiewicz, B., Irons, B., Ergatoudis, J., Ahmad, S. and Scott F. C., Iso-Parametric and Associated Element Families for Two and Three Analysis,” in Finite Element Methods in Stress Analysis, TAPIR, Technical Univ. of Norway, I. Holand & K. Bell, eds., Trondheim, Norway (1969).

  46. Fjeld, S. A., “Three Dimensional Theory of Elasticity” in Finite Element Methods in Stress Analysis, Tapir, Tech. Univ. of Norway, I. Holand & K. Bell, eds., Trondheim, Norway (1969).

  47. Clough, R. W., “Comparison of Three Dimensional Finite Elements,”in Application of Finite Element Methods in Civil Engineering, Proc. of Conf. at Vanderbilt Univ., W. H. Bowan, andR. M. Hackett, eds., ASCE, N.Y. (1969).

    Google Scholar 

  48. Morris, R. C., Wells, J. R., andYoon, P. S., “FORMAT-Fortran Matrix Abstraction Technique,VII,Description of Digital Computer Program-Phase, III.”AFFDL-TR-66-207,VII,Air Force Flight Dynamics Lab.,Wright-Patterson AFB, Ohio,Dec. 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, B. The shifting roles of computers, experiments and analysis in applied mechanics. Experimental Mechanics 11, 385–393 (1971). https://doi.org/10.1007/BF02327642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02327642

Keywords

Navigation