Skip to main content
Log in

Einfluß statischer magnetischer Felder auf die Aktivität von Osteoblasten: eine In-vitro-Untersuchung

Effects of static magnetic fields on osteoblast cell activity: an in-vitro study

  • Originalarbeit-Experimentelle Untersuchung
  • Published:
Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Zusammenfassung

Die Beeinflussung von Osteoblasten durch statische Magnetfelder wurde in vitro überprüft. Dazu wurden embryonale Osteoblasten von Rattenkalvarien in vitro dem Einfluß von Neodynium-Magneten (Intensität 178 mT) ausgesetzt. Als Marker für die Osteoblastenaktiyität diente die alkalische Phosphatase, die histochemisch nachgewiesen und semiquantitativ bestimmt wurde. Neben Kontrollgruppen mit entimagnetisierten Magneten (n=11) und ohne Magneten (n=9) wurden Magnetkonfigurationen mit anziehenden (n=11) und mit abstoßenden Magneten (n=10) verwendet. Es zeigte sich, daß die Form der Osteoblasten nicht von statischen Magneffeldern beeinflußt wird, ebenso orientieren sie sich nicht an den Feldlinien. Heterogene und homogene statische Magnetfelder haben ebenso wie eine unterschiedliche vertikale und horizontale Orientierung homogener Felder keine Wirkung auf die produzierte alkalische Phosphatase. Nach den Ergebnissen dieser In vitro-Studie war kein signitikanter Effekt statischer magnetischer Felder mit der Intensität von 178 mT auf Osteoblastenkulturen zu beobachten.

Summary

The aim of the present study was to investigate whether the influence of static magnetic fields can be demonstrated in an osteoblast cell culture. For this in-vitro study we used osteoblasts originating from the embryonal calyariae of rats. The total material (n=41) was divided in four group: a) cell cultures submitted to the fields of attracting magnets (n=11), b) cell cultures in the fields of repelling magnets (n=10), c) cell cultures under the influence of demagnetized magnets (sham group, n=11), d) control cultures (n=9). The cell cultures were subjected for 21 days to magnetie fields (intensity 178 ml) using Neodynium magnets. Osteoblast activity was histo chemically determined by staining the alkaline phosphatase produced. The quantitative evaluation was performed by measuring the optical density of the cell cultures and the results were statistically analysed. The results of these in-vitro study are 1. The optical density of the cell cultires was nearly the same in samples with or without the influence of magnetic fields. 2. No divergent reaction could be found between the application of homogeneous and heterogeneous magnetie fields. 3. The different orientation of homogeneous magnetic fields in vertical or horizontal direction did not effect the osteobfast cell culture. 4. The cellular distribution in the osteoblast cultures does not follow the orientation of the magnetic field lines. 5. The form of the osteoblasts was nearly the same among all four groups. According to our results a potential influence of static magnetic fields with an intensity of 178 mT on osteoblast activity could not be determined in the cell culture by evaluating the alkaline phosphatase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Blechman, A. M.: Magnetic force systems in orthodontics. Clinical results of a pilot study. Amer. J. Orthodont. 87 (1985), 201–210.

    Article  Google Scholar 

  2. Cerny, R.: The reaction of dental tissues to magnetic fields. Aust. dent. J. 25 (1980), 264–268.

    PubMed  Google Scholar 

  3. Dellinger, E. L.: A clinical assessment of the Active Vertical Corrector — A nonsurgical alternative for skeletal open bite treatment. Amer. J. Orthodont. 89 (1986), 428–436.

    Article  Google Scholar 

  4. Esformes, I., F. Kummer, T. Livelli: Biologic effects of magnetic fields generated with CoSm magnets. Bull. Hosp. Jt. Dis. Orthop. Inst. 41 (1981), 81–87.

    PubMed  Google Scholar 

  5. Gerber, H., J. Cordey, S. M. Perren: Influence of magnetic fields on growth and regeneration in organ culture. In: Burny, F., E. Herbst, M. Hinsenkamp (eds.): Electric stimulation of bone growth and repair. Springer, Berlin-Heidelberg-New York 1978, p. 35–40.

    Google Scholar 

  6. Gianelly, A. A., A. S. Vaitas, W. M. Thomas: The use of magnets to move molars distally. Amer. J. Orthodont. Dentofac. Orthop. 96 (1989), 161–167.

    Google Scholar 

  7. Gianelly, A. A., A. S. Vaitas, W. M. Thomas, D. G. Berger: Distalisation of molars with repelling magnets. Clin. Orthodont. 22 (1988), 40–44.

    Google Scholar 

  8. Graber, T. M.: Magnetic forces in orthodontics and dentofacial orthopedics. Abstracts of the 65th Congress of the European Orthodontic Society, Würzburg 1989, p. 35.

  9. Joho, J.-R., M. A. Darendeliler: The use of magnets in orthodontics. Part I. Abstracts of the 65th Congress of the European Orthodontic Society, Würzburg 1989, p. 36.

  10. Kawata, T., K. Hirota, K. Sumitani, K. Umehara, K. Yano, H. J. Tzeng, T. Tabuchi: A new orthodontic force system of magnetic brackets. Amer. J. Orthodont. Dentofac. Orthop. 92 (1987), 241–248.

    Google Scholar 

  11. Kiliaridis, S., I. Egermark, B. Thilander: Anterior open bite treatment with magnets. Abstracts of the 65th Congress of the European Orthodontic Society. Würzburg 1989, p. 38.

  12. Malinin, G. I., W. D. Gregory, L. Moreli, V. K. Sharma, J. C. Houck: Evidence of morphological and physiological transformation of mammalian cells by strong magnetic fields. Science 194 (1976), 844–846.

    PubMed  Google Scholar 

  13. Muller, M.: The use of magnets in orthodontics: an alternative means to produce tooth movement. Europ. J. Orthodont. 6 (1984), 247–253.

    Google Scholar 

  14. Tsoneva, M. T., P. R. Penchev, G. B. Karev, S. S. gishin: Effect of a magnetic field on chromosome set and cell division. (Deistvie magnitnogo polia na khromosomnyi nabor i kletochnoe delenie). Genetika 11 (1975), 153–157.

    Google Scholar 

  15. Vardimon, A. D., T. M. Graber, L. R. Voss, E. Verrusio: Magnetic versus mechanical expansion with different force thresholds and points of force application. Amer. J. Orthodont. 92 (1987), 455–466.

    Google Scholar 

  16. Vardimon, A. D., J. J. Stutzmann, T. M. Graber, L. R. Voss, A. G. Petrovic: Functional orthopedic appliance (FOMA) II — Modus operandi. Amer. J. Orthodont. Dentofac. Orthop. 95 (1989), 371–387.

    Google Scholar 

  17. Vnukova, Z. E.: Mammalian cell culture reaction to the action of constant magnetic field of 1000 and 3000 Oe intensity. (Reaktiia kul'tur kletok mlekopitaiuschchikh ns vozdeistvie postoiannoso magnitnogo polia napriazhennost'iu 1000 i 3000 E.) Kosm. Biol. Avaikosm. Med. 12 (1978), 47–52.

    Google Scholar 

  18. Woods, M. G., R. S. Nanda: Intrusion of posterior teeth with magnets. An experiment in growing baboons. Angle Orthodont. 58 (1988), 136–150.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Vortrag, gehalten auf der wissenschaftlichen Jahrestagung der Deutschen Gesellschaft für Kieferorthopädie 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopulos, M.A., Hörler, I., Gerber, H. et al. Einfluß statischer magnetischer Felder auf die Aktivität von Osteoblasten: eine In-vitro-Untersuchung. Fortschritte der Kieferorthopädie 53, 218–222 (1992). https://doi.org/10.1007/BF02327638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02327638

Navigation