Skip to main content
Log in

Optical phenomena in photoelastic models by the rotation of principal axes

Investigation shows that, using the matrix representation of the solution of the equations of photoelasticity, an adequate description of the complicated optical phenomena in three-dimensional photoelastic models can be obtained

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The basic equations of three-dimensional photoelasticity are derived in a form which is simpler than that of equations known previously. Using the matrix representation of the solution of these equations, it is also shown that when rotation of principal axes is present there always exist two perpendicular directions of polarizer by which the light emerging from the model is linearly polarized. These polarization directions of the incident and emergent light are named primary and secondary characteristic directions, respectively. The experimental determination of characteristic directions, as well as of the phase retardation, gives three equations on every light path to determine the stress components in a three-dimensional model. A general algorithm of the method of characteristic directions is presented, and its application by determination of stress in shells by normal and tangential incidence is described. A further extension of the method to the general axisymmetric problem has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A 1,A 2 :

components of electric vector of light after transformation [eq (4)]

a 1,…,a k,b 1,…,b e,c 1,…,c m,d 1,…,d k :

constants which determine the distribution of stress in an axisymmetric model

B 1,B 2 :

components of electric vector of light after transformation [eq 7]

B 10,B 20 :

components of the incident-light vector on arbitrary coordinate axes

B 10 o,B 20 o :

components of the incident-light vector in primary characteristic directions

B 1 o,B 2 o :

components of the emergent-light vector in secondary characteristic directions

c :

velocity of light in vacuum

C :

\(\frac{1}{{2k}}\frac{{\omega ^2 }}{{c^2 }}\)

C 0,C 1 :

photoelastic constants

C′:

CC 0

D 1,D 2 :

components of electric-induction vector of light

E 1,E 2 :

components of electric vector of light

f 1,…,f 4 :

functions which determine the distribution of stress in an axisymmetric model

G(γ):

diagnonal unitary matrix [eq (20)]

k :

ωN/c

N :

index of refraction of the non-stressed medium

R :

\(\frac{{2\varphi _0 }}{\Delta }\)

r :

outer radius of a cylindrical shell; radial coordinate in an axisymmetric model

S :

\(\sqrt {1 + R^2 } \)

Sj):

matrix of rotation [eq (19)]

t :

thickness of the model

U :

unitary matrix [eq (17)]

U 1 :

unitary matrix which transforms the incident-light vector into the plane of symmetry

U 1 * :

transpose ofU 1

u′, v′ :

primary characteristic directions

u″, v″ :

secondary characteristic directions

x 1 ,x 2 :

principal directions at the point of entrance of light

x 1 ,x 2 :

principal directions at the point of emergence of light

x 1,x 2,z :

rectangular coordinates

z 1 :

z 2/rt

α:

angle between conjugate characteristic directions

α1, α2 :

angles which determine the primary and secondary characteristic directions

β:

\(\frac{{3(1 - \mu ^2 )}}{{r^2 t^2 }}\)

2γ:

characteristic phase retardation which corresponds to the matrixU

2γ1 :

characteristic phase retardation which corresponds to the matrixU 1

Δ:

C't1 − σ2)

Δ*:

phase retardation determined by [eq (37)]

σ ij :

Kronecker's tensor

ij :

tensor of dielectric constant

j :

principal components of the tensor of dielectric constant perpendicular to the wave normal

μ:

Poisson's ratio

ξ, ζ, θ:

parameters of the matrixU

σ ij :

stress tensor

σ1, σ2 :

principal stresses perpendicular to the wave normal

11 − σ22) n , (σ12) n :

membrane stress components in a shell

11 − σ22) b , (σ12) b :

maximum bending stresses in a shell

σ n :

½C′(σ11 − σ22) n

σ b :

½C′(σ11 − σ22) b

σ2b :

longitudinal bending stress in a cylindrical shell

σϑb :

circumferential bending stress in a cylindrical shell

σϑn :

circumferential membrane stress in a cylindrical shell

σ2n :

longitudinal membrane stress in a cylindrical shell

σ2b °:

max σ2b

σ:

\({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}C'\left( {\frac{t}{r}\sigma \vartheta _n - \sigma _{2b} ^\circ } \right)\)

σ r , σϑ, σ22, τ2r :

stress components in an axisymmetric model

τ n :

C′(σ12) n

τ2r :

shearing stress in a cylindrical shell

τ1r °:

max τ1r

τ:

C′τ2r °

ϕ:

angle of rotation of principal axes

ϑ0 :

total angle of rotation of principal axes

ψ:

1/2SΔ

ω:

frequency of vibration of light

References

  1. Ginsburg, V. L., “On the Influence of the Terrestrial Magnetic Field on the Reflection of Radio Waves from The Ionosphere,”Jnl. Phys.,7 (6),289–304 (1943).

    MathSciNet  Google Scholar 

  2. Ginsburg, V. L., “On the Investigation of Stress by the Optical Method,” (in Russian),Zh. Tekh. Fiz.,14 (3),181–192 (1944).

    MathSciNet  Google Scholar 

  3. O'Rourke, R. C., “Three-Dimensional Photoelasticity,”Jnl. Appl. Phys.,22 (7),872–878 (1951).

    MATH  MathSciNet  Google Scholar 

  4. Proshke, V. M., “On the Investigation of Stress in Three-Dimensional Models” (in Russian),The Method of Polarized Light for Measurement of Stress, Publ.,Acad. Sci. of the USSR, Moscow, 214–219 (1956).

    Google Scholar 

  5. Aben, H. K., “On the Investigation of Three-Dimensional Photoelastic Models,” (in Russian),Izv. Akad. Nauk SSSR, Mekh. i Mashinostr., (4),40–46 (1964).

    MATH  Google Scholar 

  6. Mindlin, R. D., andGoodman, L. E., “The Optical Equations of Three-Dimensional Photoelasticity,”Jnl. Appl. Phys.,20 (1),89–97 (1949).

    Google Scholar 

  7. Neumann, F., “Die Gesetze der Doppelbrechung des Lichtes in komprimierten oder ungleichförmig erwärmten unkrystallinischen Körpern,” Abh. d. Kön. Akad. d. Wissenschaften zu Berlin, Pt. II (1841).

  8. Kuske, A., “Die Gesetzmässigkeiten der Doppelbrechung,”Optik,19 (5),261–272 (1962).

    MathSciNet  Google Scholar 

  9. Kuske, A., “Beiträge zur spannungsoptischen Untersuchung von Flächentragwerken,”Abh. d. Dtsch. Akad. d. Wissenschaften zu Berlin, Kl. Math., Phys. u. Tchn.,4,115–126 (1962).

    Google Scholar 

  10. Drucker, D. C., andMindlin, R. D., “Stress Analysis by Three-Dimensional Photoelastic Methods,”Jnl. Appl. Phys.,11 (11)724–732 (1940).

    Google Scholar 

  11. Mindlin, R. D., “An Extension of the Photoelastic Method of Stress Measurement to Plates in Transverse Bending,”Jnl. Appl. Mech.,8 (4),A-187 (1941).

    Google Scholar 

  12. Indenbom, V. L., “About the Stress on the Surface of Glass Specimens,” (in Russian),Zh. Tekh. Fiz.,26 (2),370–374 (1956).

    Google Scholar 

  13. Aben, H. K., “Application of the Method of Photoelasticity for the Analysis of Buckled Plates,” (in Russian),Izv. Akad. Nauk Estonian SSR, Ser. Tekh. i. Fiz.-Mat. Nauk,6 (1),28–40 (1957).

    Google Scholar 

  14. Masaki, Jun-ichi, “On the Problem of Rotation of Polarizing Axes in Stress Measurement of Shell-Type Glass-to-Metal Seals,” Proc. 2nd Japan Congr. on Testing Matls. (Kyoto, 1958), 189–191 (1959).

  15. Kuske, A., “Einige neue spannungsoptische Verfahren,” Selected Papers on Stress Analysis (Conf., Delft 1959), 58–65 (1961).

  16. Mylonas, C., andDrucker, D. C., “Twisting Stresses in Tape,”Experimental Mechancis,1 (7),23–32 (1961).

    Google Scholar 

  17. Lee, L. H. N., “Effects of Rotation of Principal Stresses on Photoelastic Retardation,”Ibid.,4 (10),306–312 (1964).

    Article  Google Scholar 

  18. Aben, H., “On the Experimental Determination of Parameters of Complex Optical Systems,” (in Russian),Izv. Akad. Nauk Estonian SSR, Ser. Fiz.-Mat. i Tekh. Nauk,13 (4),329–343 (1964).

    Google Scholar 

  19. Jones, R. C., “A New Calculus for the Treatment of Optical Systems, I,”Jnl. Opt. Soc. Amer.,31 (7),488–493 (1941).

    MATH  Google Scholar 

  20. Kuske, A., “Einführung in die Spannungsoptik,”Wissenschaftliche Verlaggesellschaft M.B.H., Stuttgart (1959).

    Google Scholar 

  21. Poincaré, H., “Théorie Mathématique de la Lumière, II,” Paris (1892).

  22. Hurwitz, H., andJones, R. C., “A New Calculus for the Treatment of Optical Systems, II,”Jnl. Opt. Soc. Amer.,31 (7),493–499 (1941).

    Google Scholar 

  23. Robert, A., andMme Guillemet, “Nouvelle méthode d'utilisation de la lumière diffusée en photoélasticimétrie à trois dimensions,”Rev. Franç. de Méc., (5/6),147–157 (1963).

    Google Scholar 

  24. Bokshtein, M. F., “Geometrical Analysis of the Polarized Light while it Passes a Three-Dimensional Stressed Model” (in Russian), The Method of Polarized Light for Measurement of Stress (Conf., Leningrad 1958), Leningrad Univ. Publ., 102–107 (1960).

  25. Plechata, R., “Determination of Resultant Parameters in a Three-Dimensional Elastically Loaded Continuum,”Acta Technica ČSAV, No.5, 432–439 (1964).

    Google Scholar 

  26. Aben, H. K., “Photoelastic Phenomena by Uniform Rotation of Principal Axes,” (in Russian)Izv. Akad. Nauk SSSR, Mekh. i. Mashinostr., (3),141–147 (1962).

    Google Scholar 

  27. Aben, K. H., “A Nomogram for the Interpretation of the Photoelastic Phenomena by Uniform Rotation of Principal Axes” (in Russian),Izv. Akad. Nauk SSSR, Mekh. i Mashinostr., (6),174–175 (1963).

    Google Scholar 

  28. Aben, H. K., and Saks, E. G., “Optical Phenomena by Passing of Light Through Shells” (in Russian), The Method of Polarized Light for Measurement of Stress (Conf., Leningrad 1958), Leningrad Univ. Publ., 208–221 (1960).

  29. Kayser, R., “Spannungsoptische Untersuchung von allgemeinen Flächentragwerken unter direkter Beobachtung,” Dissertation, T. H. Stuttgart (1964).

  30. Kuske, A., “L'analyse des Phénomènes optiques en photoélasticité à trois dimensions par la méthode du cercle de j,”Rev. Franç. de Méc., 9, 49–58 (1964).

    Google Scholar 

  31. Aben, H. K., “On the Application of Photoelastic coatings by the Investigation of Shells” (in Russian),Izv. Akad. Nauk. SSSR, Mekh. i Mashinostr.,7 (6),106–111 (1964).

    Google Scholar 

  32. Riney, T. D., “Photoelastic Determination of the Residual Stress in the Dome of Electron Tube Envelopes,”Proc. SESA,15 (1),161–170 (1957).

    Google Scholar 

  33. Masaki, Jun-ichi, “A Simple Method for Measuring the Stress in Shell-Type Glass-to-Metal Seals,” Proc. 1st Japan. Congr. on Testing Matls. (Tokyo 1957), 159–163 (1958).

  34. O'Rourke, R. C. andSaenz, A. W., “Quenching Stresses in Transparent Isotropic Media and the Photoelastic Method,”Quart. Appl. Math.,8 (3),303–311 (1950).

    MathSciNet  Google Scholar 

  35. Drucker, D. C., andWoodward, W. B., “Interpretation of Photoelastic Transmission Patterns for a Three-Dimensional Model,”Jnl. Appl. Phys.,25 (4),510–512 (1954).

    Google Scholar 

  36. Aben, H. K., “Some Problems of Superposing of Two Birefringent Plates,” (in Russian),Optika i Spektr.,15 (5),682–689 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aben, H.K. Optical phenomena in photoelastic models by the rotation of principal axes. Experimental Mechanics 6, 13–22 (1966). https://doi.org/10.1007/BF02327109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02327109

Keywords

Navigation