Experimental Mechanics

, Volume 22, Issue 11, pp 418–433 | Cite as

The moiré method—A review

The main developments in the area of moiré as a tool to measure displacements, contours, slopes and strains are reviewed and some typical applications are shown
  • Cesar A. Sciammarella
Article

Abstract

The paper focuses on the moiré phenomenon as a tool of experimental mechanics.

The properties of moiré patterns are outlined. The application of these properties to the measurement of displacements of the points of a surface (intrinsic moiré), contours or deflections (projection moiré) and slopes (reflection moiré) is discussed. Observation methods, recording methods, data-processing techniques are outlined and practical aspects are stressed. Sensitivities and precisions that have been achieved are reviewed. Finally, some typical applications to problems in areas of interest are briefly described.

Keywords

Reflection Mechanical Engineer Fluid Dynamics Practical Aspect Typical Application 

List of Symbols

a

stereoscopic parallax measured in contour moiré technique

d

distance between grating and recording film

Io,In

background intensity andnth order harmonic component of transmitted intensity (n=1,2,3…)

I(x), I(x,y)

transmitted light intensity atx or (x,y) respectively

ℓ/in., ℓ/mm

lines per inch or lines per millimeter

t

gap introduced between two gratings

u, v, w

relative displacement measured alongx, y, z directions

x

coordinate of observed point

X1p,X2p

horizontal projection at illumination and observation points in contour moiré technique

Δx, Δy

shift introduced to the plate inx andy directions

Z

distance between master grating and recording lens

ΔZ

distance between master and model gratings

λ

wavelength of light used

α

ratio of transparent rule width to the pitch of grating

ϕi, ϕo

angle subtended by illumination and observation directions in shadow-moiré techniques

θ

change of angle between initial and final positions in reflection-moiré techniques

θi, θn

angle of diffraction orderi andn

ψx, ψy

continuous fringe orders of the relative displacements inx andy directions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sciammarella, C.A., Ross, B.E. andSturgeon, D., “Basic Optical Law In The Interpretation of Moiré Patterns Applied to the Analysis of Strains,” Parts 1 and 2,Experimental Mechanics,5 (5, 6),154–166 (1965).Google Scholar
  2. 2.
    Sciammarella, C.A., “Use of Gratings in Strain Analysis,”J. Physics E: Scientific Instruments,5,833–845 (1972).Google Scholar
  3. 3.
    Durelli, A.M., Sciammarella, C.A. andParks, V.J., “Interpretation of Moiré Patterns,”Proc. of the ASCE, J. Eng. Mech. Div.,89 (EM2)Part 1,71–88 (1963).Google Scholar
  4. 4.
    Sciammarella, C.A. andDurelli, A.J., “Moiré Fringes as a Means of Analyzing Strains,”Proc. of the ASCE, J. Eng. Mech. Div.,87 (EM1),51–74 (1961).Google Scholar
  5. 5.
    Chiang, F.P., “Determination of Signs in Moiré Method,”Proc. of the ASCE, J. Eng. Mech. Div.,95 (EM6),1379–1391 (1969).Google Scholar
  6. 6.
    Sciammarella, C.A. andDavis, D., “Gap Effect in Moiré Fringes Observed with Collimated Monochromatic Light,”Experimental Mechanics,8 (10),459–466 (1968).Google Scholar
  7. 7.
    Burch, J.M., “Photographic Production of Scales for Moiré Fringes Applications,”Brussels Colloquium On Optics in Metrology, London, Pergamon Press, 2–7 (May1958).Google Scholar
  8. 8.
    Burch, J.M. andPalmer, D.A., “Interferometric Methods For Photographic Production of Large Gratings,”Optica Acta,8,73–80 (1971).Google Scholar
  9. 9.
    Marchant, M. andBishop, S.M., “An Interference Technique For The Measurement of In-Plane Displacements of Opaque Surfaces,”J. Strain Analysis,9 (1),36–43 (1974).Google Scholar
  10. 10.
    Walker, C.A. andMcKelvíe, G., “A Practical Multiplied-moiré System,”Experimental Mechanics,10 (8),316–320 (Aug.1978).Google Scholar
  11. 11.
    Sciammarella, C.A. andSturgeon, D.S., “Thermal Stresses At High Temperatures In Stainless-steel Rings By the Moiré Method,”Experimental Mechanics,6 (5),235–243 (1966).Google Scholar
  12. 12.
    Holister, G.S. andLuxmoore, H.R., “The Production of High Density Moiré Grids,”Experimental Mechanics,8 (5),210–216 (May1968).Google Scholar
  13. 13.
    DeCaluwé, N., “Etching Moiré Test Grids in Steel,” Strain, 135–139 (July 1974).Google Scholar
  14. 14.
    Sciammarella, C.A. andChiang, F.P., “Gap Effect on Moiré Patterns,”Zeitschrift für Angewandte Mathematik und Physik,19,326–333 (1968).Google Scholar
  15. 15.
    Luxmoore, H.R., “The Moiré Effect Applied to Experimental Stress Analysis,”Strain,5 (3),164–170 (July1969).Google Scholar
  16. 16.
    Holister, G.S. andWatts, D.Telecentric Systems For Moiré Analysis,”Experimental Mechanics,10 (1),31–38 (1970).Google Scholar
  17. 17.
    Kawakita, T., Shirota, Y. andMiyamoto, H., “Unique Application of the New Three-Dimensional Moiré Fringe Technique For Transient Analysis of High Speed Deformations,”Mech. Behavior of Matls., Proc. of the Inter. Conf. of Mech. Behaviour of Matls., Kyoto, Japan, 1971, The Soc. of Matls. Sci.,5,325–342 (1972).Google Scholar
  18. 18.
    Dechaene, R., DeCock, J. and DeCaluwé, N., “Measurement of Thermal Strains,” Rpt. of the Laboratorium voor Weerstand Van Materialen, Univ. of Ghents (1969).Google Scholar
  19. 19.
    Sciammarella, C.A., “Theoretical and Experimental Study on Moiré Fringes,” PhD Thesis, Ill. Instit. of Tech. (June 1960).Google Scholar
  20. 20.
    Theocaris, P.S., “The Moiré Method in Thermal Fields,”Experimental Mechanics,4 (8),223–231 (1964).Google Scholar
  21. 21.
    Sciammarella, C.A. and Sturgeon, D., “Substantial Improvement in the Processing of Moiré Data by Optical and Digital Filtering,” Proc. of the 3rd Inter. Cong. of Exper. Stress Analysis, West Berlin, 79–83 (1966).Google Scholar
  22. 22.
    Burch, J.M. andForno, C., “A High Sensitivity Moiré Grid Technique For Studying Deformations In Large Objects,”Optical Engrg.,14 (2),178–185 (1975).Google Scholar
  23. 23.
    Idesawa, M., Yagatai, T. andSoma, T., “Scanning Moiré Method and Automatic Measurement of 3-D Shapes,”Appl. Optics,16 (8),2152–2162 (1977).Google Scholar
  24. 24.
    Yokozeki, S. andMihira, S., “Moiré Interferometry,”Applied Optics,18 (8),1275–1280 (1979).Google Scholar
  25. 25.
    Sciammarella, C.A. and Lurowist, N., “Multiplication and Interpolation of Moiré Fringe Orders by Purely Optical Techniques,” Proc. of the 5th U.S. Natl. Cong. of Appl. Mech., June 1966, J. Appl. Mech., 425–430 (June 1967).Google Scholar
  26. 26.
    Holister, G.S., “Moiré Method of Surface Strain Measurement,” The Engineer, 149–152 (Jan. 1967).Google Scholar
  27. 27.
    Sciammarella, C.A., “Moiré-fringe Multiplication by Means of Filtering and Wave-reconstruction Process,”Experimental Mechanics,9 (4),179–185 (1969).Google Scholar
  28. 28.
    Guild, J., “The Interference Systems of Crossed Diffraction Gratings,” Oxford at the Clarendon Press (1956).Google Scholar
  29. 29.
    Post, D., “Analysis of Moiré Fringe Multiplication Phenomena,”Appl. Optics,6 (11),1938–1942 (1967).Google Scholar
  30. 30.
    Post, D., “New Optical Methods of Moiré-fringe Multiplication,”Experimental Mechanics,8 (2),63–68 (1968).Google Scholar
  31. 31.
    Post, D., “Moiré Fringe Multiplication With Non-Homogeneous Strain Fields,” JBCSA Conf., Recent Advances in Stress Analysis, 6.16–6.18, Roy. Aeronaut. Soc. (1969).Google Scholar
  32. 32.
    Sciammarella, C.A., DiChirico, G. and Chang, T.Y., “Moiré-holographic Technique For Three-Dimensional Analysis,” Proc. of the 12th Inter. Cong. of Appl. Mech., Aug.–Sept. 1968, J. Appl. Mech., 180–185 (March 1970).Google Scholar
  33. 33.
    Dantu, P., “Applications Rhéologiques de La Méthode des Réseaux,” Laboratoire Central des Ponts et Chausées (61.5) (1961).Google Scholar
  34. 34.
    Chiang, F.P., “A Method to Increase the Accuracy of the Moiré Method,”J. Eng. Mech. Div., Proc. of the ASCE,91 (EMI),137–149 (1965).Google Scholar
  35. 35.
    Sciammarella, C.A., “Elimination of the Effect of Lens Aberrations in Moiré Patterns Produced by Optically Projecting the Master Grid on the Model Grid,” J. Appl. Mech., 1038–1040 (Dec. 1967).Google Scholar
  36. 36.
    Sciammarella, C.A. andChiang, F.P., “Dynamical Stresses and Strains in Propellant Grains,”Proc. of the 6th Mig. of the Mech. Working Group, CPIA,1 (158),219–232 (Oct.1967).Google Scholar
  37. 37.
    Boone, P. andVan Beeck, W., “Moiré Fringe Multiplication Using a Spatially Filltered Projection System,”Strain,6,14–21 (1970).Google Scholar
  38. 38.
    Dantu, P., “Utilization des Réseaux Pour L'Etude des Déformations,”Laboratoire Central des Ponts et Chausees (57-6),26–47 (1957).Google Scholar
  39. 39.
    Parks, V.J. andDurelli, A.J., “Moiré Patterns of the Partial Derivatives of the Displacement Components,”J. Appl. Mech., Trans. of the ASME,33 Series E (4),901–906 (1966).Google Scholar
  40. 40.
    Sciammarella, C.A. andChang, T.Y., “Optical Differentiation of Displacement Patterns Using Shearing Interferometry by Wavefront Reconstruction,”Experimental Mechanics,11 (3),97–104 (1971).Google Scholar
  41. 41.
    Sciammarella, C.A. and Nyuko, H., “Determination of Strains by Applying Holographic Shearing Interferometry to Techniques That Provide Displacement Information,” Progress in Experimental Mechanics, Durelli Anniv. Vol., The Catholic University of America, 1–9 (May 1975).Google Scholar
  42. 42.
    Brutti, C., DiChirico, G. and Pighini, U., “Optical Differentiation of Moiré-Holographic Fringes by Wavefront Reconstruction With White Light Sources,” 1st European Cong. on Optics Appl. to Metrology, Paper 136-56, Strasbourg (Oct. 1977).Google Scholar
  43. 43.
    Sciammarella, C.A., “Technique of Fringe Interpolation in Moiré Patterns,”Experimental Mechanics,7 (11),19A-30A (1967).Google Scholar
  44. 44.
    Sciammarella, C.A. andSturgeon, D., “Digital Filtering Techniques Applied to the Interpolation of Moiré-fringe Data,”Experimental Mechanics,7 (11),468–475 (1967).Google Scholar
  45. 45.
    Sciammarella, C.A., andDoddington, C.W., “Effect of Photographic-film Nonlinearities on the Processing of Moiré-fringe Data,”Experimental Mechanics,7 (9),398–402 (1967).Google Scholar
  46. 46.
    Sciammarella, C.A., “A Numerical Technique of Data Retrieval From Moiré or Photoelastic Patterns,”Proc. SPIE, Seminar in Depth Pattern Recognition Studies,18,91–101 (1969).Google Scholar
  47. 47.
    Sciammarella, C.A. and Rowlands, E., “Numerical and Analog Techniques to Retrieve and Process Fringe Information,” Proc. of the 5th Inter. Conf. on Exper. Stress Analysis, Udine, Italy, 1.43–1.52 (1974).Google Scholar
  48. 48.
    Berghaus, D.G. andCannon, J.P., “Obtaining Derivatives From Experimental Data Using Smoothed Spline Functions,”Experimental Mechanics,13 (1),38–42 (1973).Google Scholar
  49. 49.
    Olson, D.L., “A Photomechanics System for Non-Destructive Three-Dimensional Stress Analysis,”PhD Thesis, Dept. of Agr. Engrg., Iowa State Univ., Ames, IA (1970).Google Scholar
  50. 50.
    Rowlands, R.E., Liber, T., Daniel, I.M. andRose, P.G., “Higher-order Numerical Differentiation of Experimental Information,”Experimental Mechanics,13 (3),105–113 (1973).Google Scholar
  51. 51.
    Bossaert, W., Dechaene, R. andVinckier, A., “Computation of Finite Strains From Moiré Displacement Patterns,”J. Strain Analysis,3 (1),65–75 (1968).Google Scholar
  52. 52.
    Ohta, A., Kosuge, M. andLasaki, E., “Measurement of Strain Distribution by the Moiré Fringe Multiplication Method at a Tip of Propagating Fatigue Crack,”Inter. J. of Fract.,13 (3),289–300 (1977).Google Scholar
  53. 53.
    Mulot, M., “Application of the Moiré to the Study of Mica Deformations,”Rev. D'Optique,4,252–259 (May1925).Google Scholar
  54. 54.
    Weller, R. andShephard, B.M., “Displacement Measurement by Mechanical Interferometry,”Proc. of the SESA,6 (1),35–38 (1948).Google Scholar
  55. 55.
    Kaezer, J. andKroupa, F., “The Determination of Strains by Mechanical Interference,”Czech. J. of Appl. Physics,1 (2),80–85 (1952).Google Scholar
  56. 56.
    Theocaris, P.S., “Moiré Method in Plates,” Non-Classical Shell Problems, Proc. of the IASS Symp., Warsaw, 877–889 (1964).Google Scholar
  57. 57.
    Pirodda, L., “Principi e Applicazione di un Metodo Fotogrammetrico Basatto Sull'impiego del Moiré,”Rivista di Ingegneria, (12),1–12 (1969).Google Scholar
  58. 58.
    Meadows, D.M., Johnson, W.O. andAllen, T.B., “Generation of Surface Contours by Moiré Patterns,”Appl. Optics,9 (4),942–947 (1970).Google Scholar
  59. 59.
    Takasaki, A., “Moiré Topology,”Appl. Optics,9 (6),1457–1472 (1970).Google Scholar
  60. 60.
    Chiang, C., “Moiré Patterns From the Surface and Their Application In Measuring Topography,”Brit. J. Appl. Physics (J. Phys D), Series 2,2,287–292 (1969).Google Scholar
  61. 61.
    Chiang, C., “Moiré Topography,”Appl. Optics,14 (1),177–179 (1975).Google Scholar
  62. 62.
    Heiniger, F. andTschudi, T., “Moiré Depth Contouring,”Appl. Optics,8 (10),1577–1581 (1979).Google Scholar
  63. 63.
    Roger, R., “Moiré Contouring—A re-Interpretation,” Univ. of Oxford, Dept. of Engrg. Sci., OUL Rpt., (1294) (1979).Google Scholar
  64. 64.
    Browne, A.L., “Fluid Film Thickness Measurement With Moiré Fringes,”Appl. Optics,11 (10),2269–2277 (1972).Google Scholar
  65. 65.
    Hovanesian, J.D. andHung, Y.Y., “Moiré Contour-Sum Contour-Difference and Vibration Analysis of Objects,”Appl. Optics,10 (12),2734–2738 (1971).Google Scholar
  66. 66.
    Perrin, J.C. andThomas, A., “Electronic Processing of Moiré Fringes: Application to Moiré Topography and Comparison With Photogrammetry,”Appl. Optics,18 (4),563–574 (1979).Google Scholar
  67. 67.
    Benoit, P., Mathieu, E., Hornière, J. andThomas, A., “Characterization and Control of Three Dimensional Objects Using Fringe Projection Techniques,”Nouvelle Review d'Optique,6 (2),65–73 (1975).Google Scholar
  68. 68.
    Pirodda, L., “Dimensional Metrology of Large Objects by Projection Moiré Techniques,” 1st European Cong. on Optics Appl. to Metrology,” Paper 136-60, Strasbourg (Oct. 1977).Google Scholar
  69. 69.
    Dessus, B. andLeBlanc, M., “Fringe Method and its Application to the Measurement of Deformations, Vibrations Contour Lines and Differences of Objects,”Opto. Electronics,5 (5),369–391 (Sept.1973).Google Scholar
  70. 70.
    Murakami, K. andMurakami, Y., “A Study of the Moiré Topography (An Accurate Theory and the Applicable Limit of the Divergent Light Ray Method),”Bul. of the JSME,21 (155),788–792 (1978).Google Scholar
  71. 71.
    Wasowski, J.J., “Moiré Surface Contouring by Addition Method,” Proc. of the 6th Inter. Conf. on Exper. Stress Analysis, Munich, 127–134 (1978).Google Scholar
  72. 72.
    Takasaki, H., “Moiré Topography,”Appl. Optics,12 (4),845–850 (April1973).Google Scholar
  73. 73.
    Keck, V.G., Windischbauer, G. andRanninger, G., “Ermittlung Von Mabzahlen Biologischer Objekte Mit Moiré-Topographie,”Optik,37 (3),310–315 (1973).Google Scholar
  74. 74.
    Murakami, K. andMurakami, Y., “A Study of the Moiré Topography. A Method for Discriminating Between the Concave and Convex Regions of an Object,”Bul. of the JSME,21 (152),196–202 (1978).Google Scholar
  75. 75.
    Livnat, A., Kapi, O. andErez, G., “Hills And Valleys In Optical Mapping and Its Application to Moiré Contouring,”Appl. Optics,19 (19),3396–3401 (1980).Google Scholar
  76. 76.
    Takasaki, H., “Moiré Topography Systems and Applications,” Handbook of Non-Topographic Photogrammetry, Amer. Soc. of Photogrammetry, 167–184 (1979).Google Scholar
  77. 77.
    Chiang, F.P., “A Shadow Moiré Method With Two Discrete Sensitivities,”Experimental Mechanics,15 (10),382–385 (1975).Google Scholar
  78. 78.
    Sciammarella, C.A., “Analysis of the Vibration of Plates by Means of the Moiré Method,” Metodi ed Applicazioni Dell'Analesi Sperimentale Delle Tensioni, Atti Del lo Convegno Nationale AIAS, Palermo, Italy, 15–21 (1972).Google Scholar
  79. 79.
    Hung, Y.Y., Liang, C.Y., Hovanesian, J.D. andDurelli, A.J., “Time-Averaged Shadow Moiré Method for Studying Vibrations,”Appl. Optics,16 (6),1717–1719 (1977).Google Scholar
  80. 80.
    Motycka, J., “A Grazing-incidence Moiré Interferometer For Displacement and Planeness Measurement,”Experimental Mechanics,15 (7),279–281 (1975).Google Scholar
  81. 81.
    Varner, J.R., “Holographic and Moiré Surface Contouring,” Holographic Non-Destructive Testing, Academic Press, 105–147 (1974).Google Scholar
  82. 82.
    Miles, C.A. andSpeight, B.S., “Recording the Shape of Animals by the Moiré Method,”J. of Physics E: Scientific Instruments,8,773–776 (1975).Google Scholar
  83. 83.
    Eppes, T.A., “Application of Moiré Techniques to Pictureless Gaging,” Tech. Spin Off Rpt., Contract AT (29-1)-613, U.S. Atomic Energy Commission (1975).Google Scholar
  84. 84.
    Ligtenberg, F.K., “Aver Een Methode Om Door Een Eenvoding Experiment de Momente in Styeve Platen te Palen,”Ingenieur (9),42–46 (1952).Google Scholar
  85. 85.
    Ligtenberg, F.K., “The Moiré Method, A New Experimental Method For the Determination of Moments in Small Slab Models,”Proc. of the SESA,12 (2),83–98 (1955).Google Scholar
  86. 86.
    Reider, G. andRitter, R., “Krummungsmessung an Beiasteten Platten nach dem Ligtenbergschen Moiré Verfaheren,”Forsch. Ing. Wes. Bd. 31 (3),33–34 (1965).Google Scholar
  87. 87.
    Bouwkamp, J.G., “The Moiré Method and the Evaluation of Principal Moments and Stress Directions,”Experimental Mechanics,4 (4),121–128 (1964).Google Scholar
  88. 88.
    Theocaris, P.S., “Moiré Patterns of Slope Contours in Flexed Plates,”Experimental Mechanics,6 (4),212–217 (1966).Google Scholar
  89. 89.
    Theocaris, P.S., “Slope Measurement by Means of Moiré Fringes,”J. Sci. Instr.,42,607–610 (1965).Google Scholar
  90. 90.
    Heise, U., “A Moiré Method For Measuring Plate Curvature,”Experimental Mechanics,7 (1),47–48 (1967).Google Scholar
  91. 91.
    Chiang, F.P. andJaisingh, G., “A New Optical System For Moiré Methods,Experimental Mechanics,14 (11),459–462 (1974).Google Scholar
  92. 92.
    Ritter, R. andHerbst, M., “Ein Optisches System Zur Aufnahme von Verformungsgrossen Dynamisch Belasteter Platten,”Forsch. Eng. Wes.,42 (3),82–85 (1976).Google Scholar
  93. 93.
    Ritter, R. andGonska, W., “Experimentelle Bestimmung der Krummungs Grossen Dynamisch Belasteter Platten Nach der Moiré Prinzip,”Forsch., Eng. Wes.,43 (5),141–145 (1977).Google Scholar
  94. 94.
    Pedretti, M., “Nouvelle Méthode de Moiré Pour L'Analyse Des Plaques Flechies,” Doctoral Thesis, Ecole Polytechnique Federale de Lausanne (1974).Google Scholar
  95. 95.
    Ranganayakamma, B. andChiang, F.P., “Mismatches Applied to Ligtenberg's Reflective Moiré Methods,”J. of Strain Analysis,8 (1),24–29 (1973).Google Scholar
  96. 96.
    Duncan, J.P., “The Optical Survey of Curve Surfaces,” Rpt.—Dept. of Mech. Engrg., The Univ. of Brit. Columbia (1966).Google Scholar
  97. 97.
    Osgerby, C., “Application of the Moiré Method for Use with Cylindrical Surfaces,”Experimental Mechanics,7 (7),313–320 (1967).Google Scholar
  98. 98.
    Sciammarella, C.A. andDurelli, A.J., “Elasto-Plastic Stress and Strain Distribution in a Finite Plate With a Circular Hole Subjected to Unidimensional Load,”J. of Appl. Mech.,30 (1),115–121 (1963).Google Scholar
  99. 99.
    Theocaris, P.S., “The Moiré Method in Thermal Fields,”Experimental Mechanics,4 (8),223–231 (1964).Google Scholar
  100. 100.
    Theocaris, P.S. andHazell, C.R., “Experimental Investigation of Subsequent Yield Surfaces Using the Moiré Method,”J. Mech. Phys. Solids,13,281–294 (1965).Google Scholar
  101. 101.
    Ullmann, K., “Anwendung des Moireefektes Zur Experimentellen Dehnungsanalyse,”Beiträge Zur Spannungsund Dehnungsanalyse, Berlin, Akademie-Verlag (1970).Google Scholar
  102. 102.
    Sampson, R.C. andCampbell, D.M., “The Grid Shift Technique For Moiré Analysis of Strain in Solid Propellants,”Experimental Mechanics,7 (11),449–457 (1967).Google Scholar
  103. 103.
    Theocaris, P.S. andHadjijoseph, Chr., “Transient Lateral Contraction Ratio of Polymers in Creep and Relaxation,”Kolloid-Zeitschrift Zeitschrift Für Polymere,202 (2),133–139 (1965).Google Scholar
  104. 104.
    Cloud, G., Radke, R. andPeiffer, J., “Moiré Gratings For High Temperatures and Long Times,”Experimental Mechanics,19 (10),19N-21N (1979).Google Scholar
  105. 105.
    Sciammarella, C.A. andRao, M.P.K., “Failure Analysis of Stainless Steel at Elevated Temperatures,”Experimental Mechanics,19 (11),389–398 (1979).Google Scholar
  106. 106.
    Liu, H.W. and Ke, J.S., “Moiré Method,” Experimental Techniques in Fracture Mechanics, ed. by A.S. Kobayashi,2,SESA, 111–165 (1975).Google Scholar
  107. 107.
    Armenakas, A.E. andSciammarella, C.A., “Experimental Investigation of the Failure Mechanism of Fiber-reinforced Composites Subjected to Uniaxial Tension,”Experimental Mechanics,13 (2),49–58 (1973).Google Scholar
  108. 108.
    Armenakas, A.E. andSciammarella, C.A., “Response of Glass-fiber-reinforced Epoxy Specimens at High Rates of Tensile Loading,”Experimental Mechanics,13 (10),433–440 (1973).Google Scholar
  109. 109.
    Daniel, I.M., Rowlands, R.E. andPost, D., “Moiré Methods for Strain Analysis of Composites,”Experimental Mechanics,13 (6),246–252 (1973).Google Scholar
  110. 110.
    Dykes, B.C., “Analysis of Displacements in Large Plates by the Grid-Shadow Moiré Technique,” Experimental Stress Analysis and its Influence on Design, Proc. of the 4th Inter. Conf. on Exper. Stress Analysis, Cambridge (1970).Google Scholar
  111. 111.
    Beynet, P. andPlunkett, R., “Plate Impact and Plastic Deformation by Projectiles,”Experimental Mechanics,11 (2),64–73 (1971).Google Scholar
  112. 112.
    Takasaki, H., “Moiré Topography,” Proc. of the ISP Biostereometrics, 74 Symp. (1974).Google Scholar
  113. 113.
    Padlog, T. andGallagher, H., “Measurement of Angular Displacements of Practical Wing Structures by the Moiré Fringe Technique,”Tech. Rpt. No. FDL TDR 64 92, AF Flight Dynamics Lab., Wright-Patterson AFB (1964).Google Scholar
  114. 114.
    Laermann, K.H., “On the Experimental Analysis of Plates With Large Deflections Including Plates on Yielding Subgrade,” Proc. of the IUTAM Symp. on “Optical Methods in Mechanics of Solids,” ed. by A. Lagarde, Sijthoff and Noordhoff, 187–193 (1981).Google Scholar
  115. 115.
    Chiang, F.P. andJaising, G., “Dynamic Moiré Method For the Bending of Plates,”Experimental Mechanics 13 (11),459–462 (1974).Google Scholar
  116. 116.
    Schiewiger, H. andStreubel, R., “Die Vermungsanalyse Schalagartig Belasteter Glasplatten Mit Hilfe des Moireverfahrens,”Forch. Ing. Wess.,44 (6),169–176 (1978).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1982

Authors and Affiliations

  • Cesar A. Sciammarella
    • 1
  1. 1.Department of Mechanics, Mechanical and Aerospace EngineeringIllinois Institute of TechnologyChicago

Personalised recommendations