Experimental Mechanics

, Volume 40, Issue 4, pp 430–430 | Cite as

Comments on “Interpretation of Experimental Data for Poisson's Ratio of Highly Nonlinear Materials”

  • P. A. A. Laura
  • C. A. Rossit
  • J. C. Paloto
Discussion paper


Experimental Data Mechanical Engineer Fluid Dynamics Nonlinear Material Highly Nonlinear 


  1. 1.
    Smith, C.W., Wootton, R.J., andEvans, K.E., “Interpretation of Experimental Data for Poisson's Ratio of Highly Nonlinear Materials,” EXPERIMENTAL MECHANICS,39,356–362 (1999).Google Scholar
  2. 2.
    Ludwik, P., Elemente der technologischen Mechanik, Springer, Berlin (1909).Google Scholar
  3. 3.
    Hencky, H., “The Elastic Behavior of Vulcanized Rubber,”J. Appl. Mech. Trans. ASME,55,45–54 (1933).Google Scholar
  4. 4.
    Nadai, A., “The Creep of Metals,”J. Appl. Mech. Trans. ASME,55,61–77 (1933).Google Scholar
  5. 5.
    Parks, V.J. andDurelli, A.J., “Natural Stress,”Int. J. Nonlinear Mech.,4,7–16 (1969).CrossRefGoogle Scholar
  6. 6.
    Seth, B.R., “Generalized Strain and Transition Concepts for Elastic-plastic Deformation—Creep and Relaxation,” Proceedings of the 11th International Congress on Applied Mechanics, Munich (1964).Google Scholar
  7. 7.
    Laura, P.A.A., Vanderveldt, H., andGaffney, P.G., “Mechanical Behavior of Stranded Wire Rope,”Marine Tech. Soc. J.,4,19–32 (1970).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2000

Authors and Affiliations

  • P. A. A. Laura
    • 1
  • C. A. Rossit
    • 1
  • J. C. Paloto
    • 1
  1. 1.Department of EngineeringUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations