Experimental Mechanics

, Volume 31, Issue 4, pp 360–365 | Cite as

Determination of fracture parameters using embedded fiber-optic sensors

  • N. Narendran
  • A. Shukla
  • S. V. Letcher


The applicability of embedded fiber-optic sensors for the determination of fracture parameters is demonstrated. A Mach-Zehnder interferometric setup is used and mode-1 stress-intensity factors are obtained by embedding single-mode fibers in single-edge-notched specimens fabricated from Plexiglas. Optical fibers are embedded in-plane to measure axial strains at various depths and also in the transverse direction to measure the transverse strains, from which stress-intensity factors are determined. In both cases the experimental results compare well with the theoretical predictions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dally, J.W., “Dynamic Photoelastic Studies of Fracture,”Experimental Mechanics,28,349–361 (1979).Google Scholar
  2. 2.
    Rosakis, A.J., Ma, C.C. andFreund, L.B., “Analysis of the Optical Shadow Spot Method for a Tensile Crack in a Power-Law Hardening Materials,”J. Appl. Mech.,105,777–782 (1983).Google Scholar
  3. 3.
    Shukla, A., Agarwal, R.K. andNigam, H., “Dynamic Fracture Studies on 7075-T6 Aluminum and 4340 Steel Using Strain Gages and Photoelastic Coatings,”Eng. Fract. Mech.,31,501–515 (1988).Google Scholar
  4. 4.
    Udd, E., “Embedded Fiber Optic Sensors in Large Structures,” Proc. OE/Fibers 1991 Boston (1991).Google Scholar
  5. 5.
    Murphy, K.A., Gunther, M.F., Vengsarkar, A.M. and Claus, R.O., “Fabry-Perot Fiber Optic Sensors in Full-scale Fatigue Testing on an F-15 Aircraft,” Proc. OE/Fibers 1991, Boston (1991).Google Scholar
  6. 6.
    Murphy, K.A., Gunther, M.F., Vengsarkar, A.M. andClaus, R.O., “Quadrature Phase Shifted Extrinsic Fabry-Perot Optical Fiber Sensors,”Opt. Lett.,16,273–275 (1991).Google Scholar
  7. 7.
    Lee, C.E., Taylor, H.F., Markus, A.M. andUdd, E., “Optical-fiber Fabry-Perot Embedded Sensor,”Opt. Lett.,14,1225–1227 (1989).Google Scholar
  8. 8.
    Valis, T., Hodd, D. andMeasures, R., “Composite Material Embedded Fiber-optic Fabry-Perot Strain Rosette,”SPIE 1370,154–161 (1990).Google Scholar
  9. 9.
    Melts, G. andDunphy, J.R., “Fiber Optic Sensors for the Nondestructive Evaluation of Composite Materials,”Proc. Soc. Photo-Optical Instr. Eng.,566,159–163 (1985).Google Scholar
  10. 10.
    Culshaw, B. andDakin, B., Optical Fiber Sensors,I & II,Artech House, Inc.,Norwood, MA (1989).Google Scholar
  11. 11.
    Udd, E., Fiber Optic Sensors: An Introduction to Engineers and Scientists, John Wiley and Sons, New York (1990).Google Scholar
  12. 12.
    Bucaro, J.A., Lagakos, N., Cole, J.H. andGiallorenzi, T.G., in Physical Acoustics,XVI,ed.,R.N. Thurston andW.P. Mason,Academic,New York (1982).Google Scholar
  13. 13.
    Murphy, K.A. and Duke, J.C., Jr., “A Rugged Optical Fiber Interferometer for Strain Measurements Inside a Composite Material Laminate,” J. of Comp. Tech. and Research, 11–15 (1988).Google Scholar
  14. 14.
    Narendran, N., Shukla, A. andLetcher, S., “Application of Fiberoptic Sensor to a Fracture Mechanics Problem,”Eng. Fract. Mech.,38,491–498 (1991).Google Scholar
  15. 15.
    Sirkis, J.S. andTaylor, C.E., “Interferometric-fiber-optic Strain Sensor,”Experimental Mechanics,28,170–176 (1988).Google Scholar
  16. 16.
    Butter, C.D. andHocker, G.B., “Fiber Optics Strain Gauge,”Appl. Opt.,17,2867–2869 (1978).Google Scholar
  17. 17.
    Sirkis, J.S. andHaslach, H.W., Jr., “Complete Phase-strain Model for Structurally Embedded Interferometric Optical Fiber Sensors,”J. of Intell. Materials Systems and Structures,2 (1),3–24 (1991).Google Scholar
  18. 18.
    Mathews, C.T. and Sirkis, J.S., “Experimental Verification of Phase-strain Models for Structurally embedded Optical Fiber Sensors,” Proc. 1991 SEM Spring Conf. on Exp. Mech., 471–478 (1991).Google Scholar
  19. 19.
    Sakai, J.-I. andKimura, T., “Birefringence and Polarization Characteristics of Single-mode Optical Fibers Under Elastic Deformation,”IEEE J. Quantum Electronics,18,QE-17,1041–1051 (1981).Google Scholar
  20. 20.
    Dally, J.W. and Sanford, R.J., “Strain Gage Methods for Measuring the Opening Mode Stress Intensity Factor,” Proc. 1985 SEM Spring Conf. on Exp. Mech., 851–860 (1985).Google Scholar
  21. 21.
    Rosakis, A.J. and Ravi-Chandar, K., “On Crack Tip Stress State: An Experimental Evaluation of Three-dimensional Effects,” Cal. Inst. Tech. Rep., SM 84-2 (March 1984).Google Scholar
  22. 22.
    Zhu, C.Y., Chona, R. and Shukla, A., “Characterization of Singularity Dominated Zone for Propagating Cracks,” Proc. 9th Int. Conf. on Exp. Mech. (1990).Google Scholar
  23. 23.
    Broek, D., Elementary Engineering Fracture Mechanics, 4th Ed., Martinus Nijhoff Publishers (1986).Google Scholar
  24. 24.
    Shukla, A., Agarwal, B.D. andBhushan, B., “Determination of Stress Intensity Factor in Orthotropic Composite Materials Using Strain Gages,”Eng. Fract. Mech.,32,469–477 (1989).Google Scholar
  25. 25.
    Shukla, A. and Khanna, S.K., “Experimental Investigation of the Interaction of Running Cracks with Embedded Fibers,” Proc. 1990 SEM Spring Conf. on Exp. Mech., 607–613 (1990).Google Scholar
  26. 26.
    Shukla, A. and Khanna, S.K., “Effect of Fiber-matrix Interface on Toughening Mechanisms During Dynamic Fracture of Fiber Reinforced Materials,” Proc. Winter Annual Meeting of ASME (Nov. 1991).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1991

Authors and Affiliations

  • N. Narendran
    • 1
  • A. Shukla
    • 2
  • S. V. Letcher
    • 3
  1. 1.Mechanical Technology IncorporatedLatham
  2. 2.Dynamic Photomechanics Laboratory, Department of Mechanical EngineeringUniversity of Rhode Island Rhode IslandKingston
  3. 3.Department of PhysicsUniversity of Rhode IslandKingston

Personalised recommendations