Skip to main content
Log in

Dynamic-compression fatigue of hot-pressed silicon-nitride

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a technique to study dynamic compression fatigue of hard ceramics. In this technique, a split-Hopkinson-compression-bar apparatus is modified to allow recovery tests on hard ceramic samples. The exact number of fatigue cycles along with the stress level and strain rate can be controlled, and strain rates as high as 400s−1 at a peak stress of 3.2 GPa were obtained for each fatigue cycle. Two types of hotpressed silicon-nitrides, one having crystalline-grain-boundary phase, and the other having amorphous-grain-boundary phase, were repeatedly tested on this apparatus. Fatigue lives of both materials were found to be very sensitive to sample-surface roughness, and for equivalent sample-surface condition, the dynamic fatigue life of amorphous-grain-boundary phase silicon-nitride was observed to be higher than that of crystalline-grain-boundary phase silicon-nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kawakubo, T. andKomeya, K., “Static and Cyclic Fatigue Behavior of a Sintered Silicon Nitride at Room Temperature,”J. Amer. Cer. Soc.,70 (6),400–405 (1987).

    Article  Google Scholar 

  2. Chang, J., Khandelwal, P. andHeitman, P.W., “Dynamic and Static Fatigue Behavior of Sintered Silicon Nitrides,”Cer. Eng. Sci. Proc.,8, (7–8),766–777 (1987).

    Google Scholar 

  3. Nikkila, A.P. andMantyla, T.A., “Cyclic Fatigue of Silicon Nitrides,”Cer. Eng. Sci. Proc.,10 (7–8),646–656 (1989).

    Google Scholar 

  4. Okazaki, M., McEvily, A.J. andTanaka, T., “On the Mechanism of Fatigue Crack Growth in Silicon Nitride,”Met. Trans.,22A (6),1425–1434 (June 1991).

    Google Scholar 

  5. Horibe, S., “Fatigue of Silicon Nitride Ceramics under Cyclic Loading,”J. European Cer. Soc.,6 (2),89–95 (1990).

    Article  Google Scholar 

  6. Kossowsky, R., “Cyclic Fatigue of Hot Pressed Silicon Nitride,”J. Amer. Cer. Soc.,56 (10),531–535 (1973).

    Google Scholar 

  7. Masuda, M., Yamada, N., Soma, T., Matsui, M. andOda, I., “Fatigue of Ceramics (Part 2)—Cyclic Fatigue Properties of Sintered Silicon Nitride at Room Temperature,”J. Cer. Soc. of Japan, Int. Ed.,97,509–514 (May 1989).

    Google Scholar 

  8. Ko, H.N., “Fatigue Strength of Sintered Silicon Nitride Under Rotary Bending,”J. Mat. Sci. letters,6,175–177 (1987).

    Article  Google Scholar 

  9. Masuda, M., Soma, T. andMatsui, M., “Cyclic Fatigue Behavior of Silicon Nitride Ceramics,”J. European Cer. Soc.,6,253–258 (1990).

    Article  Google Scholar 

  10. Ewart, L. andSuresh, S., “Crack Propagation in Ceramics Under Cyclic Loads,”J. Mat. Sci.,22,1173–1192 (1987).

    Article  Google Scholar 

  11. Tanaka, T., Okabe, N. andIshimaru, Y., J. Japan Soc. Mat. Sci.,37,137–143 (1988).

    Google Scholar 

  12. Reece, M.J., Guitu, F. andSammur, M.F.R., “Cyclic Fatigue Crack Propagation in Alumina Under Direct Tension-Compression Loading,”J. Amer. Cer. Soc.,72 (2),348–352 (1989).

    Article  Google Scholar 

  13. Rothman, E.P., “Advanced Structural Ceramics: Technical/Economic Process Modeling of Production and a Demand Analysis for Cutting Tools and Turbochargers,” Materials Systems Lab., MIT (Aug. 1985).

  14. Baldoni, J.G. and Buljan, S.T., SME Paper MR86-912 (March 1986).

  15. North, B., SME Paper MR86-451 (March 1986).

  16. Charles River Associates, “Technological and Economic Assessment of Advanced Ceramic Materials, Vol. 6: A Case Study of Ceramic Cutting Tools,” NBS-GCR 84-470-6 (Aug. 1984).

  17. Baumgartner, H.R., “Evaluation of Roller Bearings Containing Hot-Pressed Silicon Nitride Rolling Elements,” Ceramics for High Performance Applications, ed. J.J. Burke, A. E. Gorum and R.N. Katz, Brook Hill Publishing, Chestnut Hill, MA, 713–728 (1974).

    Google Scholar 

  18. Baumgartner, H.R., “Ceramic Bearings for Turbine Applications,” Ceramics for High Performance Applications-II, ed. J.J. Burke, E.N. Lenoe and R.N. Katz, Brook Hill Publishing, Chestnut Hill, MA, 423–444 (1978).

    Google Scholar 

  19. Taguchi, M., Advanced Ceramic Materials,2,754 (1987).

    Google Scholar 

  20. Japanese Industrial Newspaper (Oct. 17, 1986).

  21. Nakatani, S., Yoshizu, K., Mitsunaga, T. and Isohita, A., SAE Paper 861406 (1986).

  22. Tsukawaki, Y., Shimano, K., Shigetsu, M., Takatoo, M., Ogawa, Y. and Ogasawara, T., SAE Paper 861408 (1986).

  23. Ogawa, Y., Machida, M., Miyamura, N., Tashiro, K. and Sugano, M., “Ceramic Rocker Arm Insert for Internal Combustion Engines”, presented at the 1986 SAE Annual Conf. (1986).

  24. Larsen, R.P. and Johnson, L.R., “Ceramic Turbochargers: A Case Study of Near-Term Application of High-Strength Ceramics,” ANL/CNSV-47 (1984).

  25. Metcalfe, A.G. and Napier, J.C., “Ceramics for Small Radial Inflow Power Generators,” Ceramics for High Performance Applications-III, Reliability ed. E.M. Lenoe, R.N. Katz and J.J. Burke, Plenum Press, New York, 173–186 (1983).

    Google Scholar 

  26. Richerson, D.W. and Johansen, K.M., “Ceramic Gas Turbine Engine Demonstration Program,” Final Rep. Contract N00024-76-C-5352 (May, 1982).

  27. McLean, A.F., “Overview of ARPA/ERDA/FORD Ceramic Turbine Program,” Ceramics for high Performance Applications-II, ed. J.J. Burke, E.N. Lenoe and R.N. Katz, Brook Hill Publishing, Chestnut Hill, MA, 1–34 (1974).

    Google Scholar 

  28. Horii, H. andNemat-Nasser, S., “Compression-Induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure,”J. Geophys. Res.,90 (B4),3105–3125 (1985).

    Google Scholar 

  29. Ashby, M.F. andHallam, S.D., “The Failure of Brittle Solids Containing Small Cracks Under Compressive Stress States,”Acta Met.,34 (3),497–510 (1986).

    Article  Google Scholar 

  30. Nemat-Nasser, S. andHorii, H., “Compression-Induced Nonplanar Crack Extension With Application to Splitting, Exfoliation, and Rockburst,”J. Geophys. Res.,87 (B8),6805–6821 (1982).

    Google Scholar 

  31. Evans, A.G., “Fatigue in Ceramics,”Int. J. Fract. Mech.,16 (6),485–498 (1980).

    Article  Google Scholar 

  32. Follansbee, P.S., “The Hopkinson Bar,”Metals Handbook, 9th Ed., ASM, Metals Park, OH,8,198–203 (1985).

    Google Scholar 

  33. Lindholm, U.S., “Some Experiments with the Split Hopkinson Pressure Bar,”J. Mech. Phys. Solids,12,317–335 (1964).

    Article  Google Scholar 

  34. Nemat-Nasser, S., Isaacs, J.B. andStarrett, J.E., “Hopkinson Techniques for Dynamic Experiments,”Proc. Roy. Soc. Lond. A,435,371–391 (1991).

    Google Scholar 

  35. Follansbee, P.S. andFrantz, C., “Wave Propagation in the Split Hopkinson Pressure Bar,”J. Eng. Mat. Tech,105,61–66 (1983).

    Google Scholar 

  36. Guiu, F., Reece, M.J. andVaughan, D.A.J., “Cyclic Fatigue of Ceramics,”J. Mat. Sci.,26,3275–3286 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V., Nemat-Nasser, S. & Vecchio, K.S. Dynamic-compression fatigue of hot-pressed silicon-nitride. Experimental Mechanics 34, 315–323 (1994). https://doi.org/10.1007/BF02325146

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325146

Keywords

Navigation