Skip to main content
Log in

Magnetophotoelasticity—Photoelasticity in a magnetic field

Investigation shows that, if a magnetic field is applied to a photoelastic model, it enables one to investigate states of stress that do not cause any optical effect in an ordinary transmission polariscope

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The basic equations governing the propagation of polarized light in a three-dimensional photoelastic model located in a magnetic field are derived. Optical phenomena in this case can be adequately described by the aid of the theory of characteristic directions developed previously by the author. The case when the principal-stress difference, as well as the magnetic field, is constant is considered in detail. An algorithm is developed that permits the study of the optical phenomena in the case of arbitrary stress distribution along the wave normal. As an example, investigation of the bending of plates is considered; graphs are produced that permit the determination of the stress components on the basis of experimental data. Some considerations of the experimental technique are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\bar B'\) :

emergent-light vector

\(\bar B_0 ^\prime \) :

incident-light vector

B 1,B 2 :

components of electric vector of light in arbitrary coordinate axes after transformation [eq (12)]

B 10,B 20 :

initial values ofB 1 andB 2

B1,B2 :

components of electric vector of light in principal directions [eq (21)]

B10,B20 :

initial values ofB1 andB2

C :

\(\frac{\omega }{{2c\sqrt \in }}\)

C 0,C 1 :

photoelastic constants

C′:

CC 0

c :

velocity of light in vacuum

D 1,D 2 :

components of electric-induction vector of light

E 1,E 2 :

components of electric vector of light

g :

\(\frac{1}{2} \int {C'} (\sigma _1 - \sigma _2 )dz\)

\(\bar H_0\) :

magnetic vector

k :

\(\frac{\omega }{c}\sqrt \in\)

M :

matrix of 2m layers of a gyrotropic photoelastic medium

M j :

matrix of a single layer of a gyrotropic photoelastic medium

p j (m),q j (m),r j (m),s j (m):

parameters of the matrix ofm layers

p,q,r,s :

parameters of the matrix of a gyrotropic photoelastic medium

R :

\(\frac{{2\psi _0 }}{\vartriangle }\)

R j :

\(\frac{{2\psi _j }}{{\vartriangle _j }}\)

S :

\(\sqrt {1 + R^2 }\)

S j :

\(\sqrt {1 + R_j ^2 }\)

t :

thickness of the model

U :

unitary two-by-two matrix

\(\bar u\) :

displacement vector

z :

coordinate in the direction of the wave normal

α:

α* - α*

α*, α* :

angles which determine the primary and secondary characteristic direction

2γ:

characteristic phase retardation

Δ:

phase retardation

\(\vartriangle _*\) :

phase retardation determined by eq (37)

δ ij :

Kronecker tensor

ε:

dielectric constant of the nonstressed medium

ε ij :

tensor of dielectric constant

\( \in _{ij} ^\prime \) :

symmetric tensor of dielectric constant

\( \in _{ij} ^{\prime \prime }\) :

antisymmetric tensor of dielectric constant

η:

1/2SΔ

λ:

wavelength

σ:

\(C'\frac{\pi }{{8\lambda }}(\sigma _1 - \sigma _2 )_0 t\)

σ 1 , σ 1 :

principal stresses

σ ij :

stress tensor

1 - σ2)0 :

principal stress difference on the surface of the bent plate

φ:

angle of rotation of principal axes

ψ:

ψ0 z

ψ0 :

Faraday rotation on a unit length

ψ123 :

Eulerian angles

ω:

frequency of vibration of light

ω123 :

projections of the vector of angular velocity on the steady axes

References

  1. Aben, H. K., “On the Investigation of Three-Dimensional Photoelastic Models” (in Russian)Izv. Akad. Nauk SSSR, Mekh. i Mashinostr., (4), 40–46 (1964).

    Google Scholar 

  2. Aben, H. K., “Optical Phenomena in Photoelastic Models by the Rotation of Principal Axes”,Experimental Mechanics,6, (1),137–146 (1966).

    Google Scholar 

  3. Goodier, J. N. andLee, G. H., “An Extension of the Photoelastic Method of Stress Measurements to Plates in Transverse Bending,”Jnl. Appl. Mech.,8 (1),27–29 (1941).

    Google Scholar 

  4. Bednar, J., “Experimental Analysis of Plates Using the Method of Model Curing,”Experimental Mechanics,7 (2)85–90 (1967).

    Google Scholar 

  5. Favre, H. andGilg, B., “Sur une méthode purement optique pour la mesure directe des moments dans les plaques minces fléchies,”Schweiz. Bauzeitung,68 (19,20),253–257,265–267 (1950).

    Google Scholar 

  6. Lerchenthal, Ch.H. and Betser, A.A., “A New Two-Layer Technique for the Photoelastic Analysis of Loaded Plates,” Photoelasticity, Pergamon Press, 97–107 (1963).

  7. Koŝťak, B.Das Einfrierverfahren f\:ur spezielle spannungs optische Untersuchungen von Platten,”Abhandl. Dtsch. Akad. Wiss. Berlin, Kl. Math. Phys. and Techn. (4),79–86 (1962).

    Google Scholar 

  8. Drucker, D. C., “The Photoelastic Analysis of Transverse Bending of Plates in the Standard Transmission Polariscope,”Jnl. Appl. Mech.,9, (4),161–164 (1942).

    Google Scholar 

  9. Ansevin, R. W., “The Nondestructive Measurement of Surface Stresses in Glass,” ISA Trans., 339–343 (October 1965).

  10. Acloque, P. and Guillement, C., “Method for the Photoelastic Measurement of Stresses in Equilibrium in the Thickness of a Plate,” Proc. Stress Analysis Conf., Inst. of Physics, Delft, 71–76 (1956).

  11. Bateson, S., Hunt, J. W., Dally, D. A. andSinha, N. K., “Stress Measurement in Tempered Glass Plates by Scattered Light Method with a Laser Source,”Jnl. Amer. Ceram. Soc.,49 (2),193–198 (1966).

    Google Scholar 

  12. Cheng, Y. F., “A Scattered Light Photoelastic Method for the Determination of Tempered Stresses in Aircraft Windshields”,Strain,3 (2),17–22 (1967).

    Google Scholar 

  13. Ginsburg, V. L., “On the Influence of the Terrestrial Magnetic Field on the Reflection of Radio Waves from the Ionosphere”,Jnl. Phys.,7 (6),289–304 (1943).

    Google Scholar 

  14. Kaliski, S., “Wave Equations of Thermo-Electro-Magnetoelasticity”,Proc. Vibration Problems,6 (3),231–265 (1965).

    Google Scholar 

  15. Aben, H., “On the Experimental Determination of Parameters of Complex Optical Systems” (in Russian)Izv. Akad. Nauk Estonian SSR, Ser. Fiz.-Mat. i Tekh. Nauk,13 (4),329–343 (1964).

    Google Scholar 

  16. Aben, H., “On a Derivation of the Optical Equations of Photoelasticity”, (in Russian) Izv. Akad. Nauk Estonian SSR, Fizika, Matematika,18 (2), (1969).

  17. Kuske, A., “Beiträge zur spannungsoptischen Untersuchungen von Flächentragwerken”,Abh. d. Dtsch. Akad. d. Wissenschaften zu Berlin, Kl. Math., Phys. u. Techn.,4,115–126 (1962).

    Google Scholar 

  18. Aben, H. K., “The Optical Investigation of Twisted Fibres”,Jnl. Textile Inst.,59 (11),523–527 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aben, H.K. Magnetophotoelasticity—Photoelasticity in a magnetic field. Experimental Mechanics 10, 97–105 (1970). https://doi.org/10.1007/BF02325113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325113

Keywords

Navigation