Skip to main content
Log in

Theory of elastic and photoelastic isodynes. Samples of application in composite structures

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The theoretical foundations of a system of new methods which the authors call ‘isodyne photoelasticity’ are presented. It is shown that the plane-elastic isodynes related to two-dimensional stress fields can be obtained experimentally using particular scattered-light techniques. The experimentally obtained photoelastic isodynes allow non-destructive analysis of stresses in structures with local three-dimensional stress states.

Isodyne photoelasticity is used to determine stresses in composite structures, in particular the stresses at internal discontinuities and the delaminating stresses. The results are used to assess the reliability of some analytical solutions. The theories of isodynes and of the developed experimental techniques of isodyne photoelasticity are presented in a manner compatible with contemporary concepts of the models of reality—physical models, mathematical models, and experimental models constructed of matter and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brillouin, L., Scientific Uncertainty and Information, Academic Press, New York (1964).

    Google Scholar 

  2. Kac, M., “Some Mathematical Models in Science,”Science, 166, 469–474 (1969).

    Google Scholar 

  3. Popper, K.R., The Logic of Scientific Discovery, Harper and Row, London (1968).

    Google Scholar 

  4. Kuhn, T.S., The Structure of Scientific Revolution, Univ. of Chicago Press, Chicago, IL (1962, 1970).

    Google Scholar 

  5. Sedov, L.I., Introduction to the Mechanics of a Continuous Medium, (translated from Russian ed., Moscow, 1962), Addison-Wesley Publishing Co. (1965).

  6. Pindera, J.T., “Contemporary Trends in Experimental Mechanics: Foundations, Methods, Applications,” Experimental Mechanics in Research and Development, ed. J.T. Pindera et al., Solid Mechanics Div., Univ. of Waterloo, Study No. 9, Waterloo, 143–168 (1973).

  7. Sedov, L.I., “On Prospective Trends and Problems in Mechanics of Continuous Media,”(in Russian), Prikladnaya Matematika i Mekhanika,40,963–980 (1976).English translation, Pergamon Press Ltd. (1977).

    Google Scholar 

  8. Pindera, J.T., “Problems of Reliability of Common Models of Basic Responses of Materials and Systems,” Proc. VIII Symp. on Exp. Res. in Mech. of Sol., Sept 4–6, 1978 Warsaw, Poland, 255–275 (1978).

  9. Pindera, J.T., Leipholz, H.H.E., Rimrott, F.P.J. and Grierson, D.E., Editors, Experimental Mechanics in Research and Development, Proc. Int. Symp. on Exp. Mech., Univ. of Waterloo, June 12–16, 1972, Solid Mech. Div., Study No. 9, Waterloo (1973).

  10. Foundations of Experimental Mechanics: Principles of Modeling, Obervation and Experimentation,”New Physical Trends in Experimental Mechanics, ed. J. T. Pindera,CISM Courses and Lectures No. 264,Springer-Verlag,Wien-New York,188-326 (1981).

  11. New Physical Trends in Experimental Mechanics, ed. J. T. Pindera,CISM Courses and Lectures No. 264, Springer Verlag, Wien-New York (1981).

    Google Scholar 

  12. Modelling Problems in Crack Tip Mechanics, ed. J. T. Pindera,Proc. 10th Canadian Frac. Conf., Aug. 24–26, 1983, Univ. of Waterloo, Martinus Nijhoff, The Hague, The Netherlands (1984).

    Google Scholar 

  13. Aleksandrov, A.D., Kolgomorov, A.N., Lavrent'ev, M.A., Mathematics, 1ts Content, Methods and Meaning (translated from the Russian edition, 1956), The MIT Press, Cambridge, MA (1981).

    Google Scholar 

  14. Ramachandran, G.N. andRameseshan, S., “Crystal Optics,”Handbuch der Physik, ed. S. Flugge,Springer Verlag, Berlin, Gottingen, Heidelberg,25 (1),1–217 (1961).

    Google Scholar 

  15. Pindera, J.T., “On the Physical Basis of Modern Photoelasticity Techniques,”Beitrage zur Spannungs-und-Dehnungsanalyse 5, Akademie-Verlag, Berlin, 103–130 (1961).

    Google Scholar 

  16. Pindera, J.T., “Response of Photoelastic Systems,”Trans. CSME,2,21–30 (1973-74).

    Google Scholar 

  17. Pindera, J.T. andStraka, P., “Response of the Integrated Polariscope,”J. Stress Anal.,8,65–76 (1973).

    Google Scholar 

  18. Pindera, J.T. andMazurkiewicz, S.B., “Photoelastic Isodynes: A New Type of Stress-Modulated Light Intensity Distribution,”Mech. Res. Communications,4,247–252 (1977).

    Google Scholar 

  19. Pindera, J.T., “Analytical Foundations of the Isodyne Photoelasticity,”Mech. Res. Communications,8,391–397 (1981).

    Google Scholar 

  20. Pindera, J.T., “New Development in Photoelastic Studies: Isodyne and Gradient Photoelasticity,”Opt. Eng.,2 (4),672–678 (1982).

    Google Scholar 

  21. Pindera, J.T. andKrasnowski, B.R., “Theory of Elastic and Photoelastic Isodynes,”SMD Paper No. 184, IEM Paper No. 1, Univ. of Waterloo, Waterloo, Ontario, Canada (Oct.1983).

    Google Scholar 

  22. Pindera, J.T., “Device for Birefringence Measurements Using Three Selected Sheets of Scattered Light (Isodyne Selector, Isodyne Collector, Isodyne Collimator),” Canadian Patent No. 1153578 (1983).

  23. Pindera, J.T., “Apparatus for Determination of Elastic Isodynes and of the General State of Birefringence Whole Field-Wise Using the Device for Birefringence Measurements in the Scanning Mode,” Canadian Patent 1156488 (1983).

  24. Pindera, J.T., Hecker, F.W. andKrasnowski, B.R., “Gradient Photoelasticity,”Mech. Res. Communications,9 (3),197–204 (1982).

    Google Scholar 

  25. Pindera, J.T., Hecker, F.W., Krasnowski, B.R., “Basic Theories and Experimental Methods of Gradient Photoelasticity,” submitted to Experimental Mechanics for publication.

  26. Pindera, J.T.Investigations of Some Rheological Photoelastic Properties of Several Polyester Resins,”(in Polish), Parts 1, 2, and 3, Rozprawy Inzynierskie,3,361–411 (1959);4,481–540 (1959).

    Google Scholar 

  27. Pindera, J.T., Remarks on Properties of Photoviscoelastic Model Materials,Experimenal Mechanics,6, (7),375–380 (July1966).

    Google Scholar 

  28. Pindera, J.T. and Kiesling, E., “On the Linear Range of Behavior of Photoelastic and Model Materials,” Proc. 3rd Int. Cong. Exp. Stress Anal., VDI-Berichte, 102 (1966).

  29. Kiesling, E. andPindera, J.T., “Linear Limit Stresses of Some Photoelastic and Mechanical Model Materials,”Experimental Mechanics,9 (8),337–347 (Aug.1969).

    Google Scholar 

  30. Pindera, J.T. andCloud, G., “On Dispersion of Birefringence of Photoelastic Materials,”Experimenial Mechanics,6 (9),470–480 (Sept.1966).

    Google Scholar 

  31. Pindera, J.T. andStraka, P., “On Physical Measures of Rheological Responses of Some Materials in Wide Ranges of Temperature and Spectral Frequency,”Rheological Acta,13,338–351 (1974).

    Google Scholar 

  32. Pindera, J.T. andMazurkiewicz, S.B., “Studies of Contact Problems Using Photoelastic Isodynes,”Experimenial Mechanics,21 (12),448–455 (Dec.1981).

    Google Scholar 

  33. Pindera, J.T., Issa, S.S. and Krasnowski, B.R., “Isodyne Coating in Strain Analysis,” Proc. 1981 SESA Spring Meeting, Dearborn, MI, SEM (formerly SESA), 111–117 (1981).

  34. Pindera, J.T. and Krasnowski, B.R., “Determination of Stress Intensity Factors in Thin and Thick Plates Using Isodyne Photoelasticity,” Fracture Problems & Solutions in the Energy Industry, ed. L.A. Simpson, Pergamon Press, 147–156 (1981).

  35. Pindera, J.T., Krasnowski, B.R. and Pindera, M.-J., “An Analysis of Semi-Plane Stress States in Fracture Mechanics and Composite Structures Using Isodyne Photoelasticity,” Proc. 1982 Joint JSME/SESA Conf. on Exp. Mech., Part 1, May 1982, Oahu and Maui, HI, SEM (formerly SESA), 417–421 (1982).

  36. Pindera, J.T., Krasnowski, B.R. and Pindera, M.-J., “Determination of Interface Stresses in Composite Structures,” Ibid. Proc. 1982 Joint JSME/SESA Conf. on Exp. Mech., Part 1, May 1982, Oahu and Maui, HI, SEM (formerly SESA), 18–22 (1982).

  37. Pindera, J.T., Krasnowski, B.R. andPindera, M.-J., “Analysis of Models of Stress States in the Region of Cracks Using Isodyne Photoelasticity,”Modelling Problems in Crack Tip Mechanics, ed. J.T. Pindera,Martinus Nijhoff Publishers BV, The Hague, The Netherlands, 271–286 (1984).

    Google Scholar 

  38. Erdogan, F. andGupta, G., “The Stress Analysis of Multi-Layered Composites with a Flaw,”Int. J. Sol. Struc. 7,39–61 (1971).

    Google Scholar 

  39. Erdogan, F. andGupta, G., “Layered Composities with an Interface Flaw,”Ibid.,7,1089–1107 (1971).

    Google Scholar 

  40. Malyshev, B.M. andSalganik, R.L., “The Strength of Adhesive Joints Using the Theory of Fracture,”Int. J. Frac. Mech.,1,114 (1965).

    Google Scholar 

  41. Zak, A.R. andWilliams, M.L., “Crack Point Stress Singularities at a Bi-Material Interface,”J. Appl. Mech.,30,142–143 (1963).

    Google Scholar 

  42. Zak, A.R. andWilliams, M.L., “Crack Point Stress Singularities at a Bi-Material Interface,”GALCIT SM 62-1, CA Inst. of Tech., Pasadena, CA (Jan.1962).

    Google Scholar 

  43. Vasil'ev, V.V., Dudchenko, A.A. andElpat'evskii, A.N., “Analysis of the Tensile Deformation of Glass-Reinforced Plastics,”Mekhanika Polimerov (1)144–147 (Jan.–Feb.1970).

    Google Scholar 

  44. Hsu, P.W. andHerakovich, C.T., “Interlaminar Stresses in Composite Laminates — A Perturbation Analysis,”Tech. Rep. VPI-E-76-1, VA Polytechnic Inst. and State Univ., Blacksburg, VA (1976).

    Google Scholar 

  45. Pindera, J.T., Krasnowski, B.R. and Pindera, M.-T., “Interlaminar Cracks in Laminated Beams—Isodyne Assessment of Some Analytical Solutions,” to be published.

  46. Erdogan, F., “Approximate Solutions of Systems of Singular Integral Equations,”SIAM J. Appl. Math.,17,1041 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pindera, J.T., Krasnowski, B.R. & Pindera, M.J. Theory of elastic and photoelastic isodynes. Samples of application in composite structures. Experimental Mechanics 25, 272–281 (1985). https://doi.org/10.1007/BF02325097

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325097

Keywords

Navigation