Skip to main content
Log in

Cubic splines compared with other methods for the calculation of programmed temperature retention indices

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Program temperature retention indices for fifteen nonalkane solutes have been determined by cubic splines, by other procedures found in the literature and by interpolation of the n-alkanes retention time logarithm for eleven temperature programs. A comparison in terms of variance of the differences between PTRI calculated by CS and each of the remaining methods is made for each of the eleven program runs, for each of the three stationary phases used and for many of the programs. The smallest variances obtained result when the Zenkevich, van den Dool & Kratz and Chen et al. methods are tested. The stationary phase polarity is of no relevance since it has no effect on the specific PTRI found by the different methods employed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TR :

retention temperature

T0 :

initial temperature

r:

programming rate, °C/min and correlation coefficient

IL :

PTRI calculated by van den Dool & Kratz

TR (S) :

retention temperature of a solute

TR(Z+N) :

TR (Z), retention temperatures of the (Z+N) and Z carbons n-alkanes

N:

Z+N-Z carbon atoms

IG :

PTRI calculated by Golovnya & Uraletz

I(T0):

isothermal retention index at T0

tR :

retention time

dI/dT:

isothermal retention index gradient

IE :

PTRI calculated by Erdey et alia

A, B, and C:

constants calculated from isothermal data

IZ :

PTRI calculated by Zenkevich et al

K:

(Z+K)-Z carbon number

q:

parameter estimated from the carbon atoms number and the tR of three n-alkanes not necessarily correlative

tR, x :

retention time of a solute x

tR, Z, tR,Z+1 :

retention times of n-alkanes emerging immediately before and after the solute x

IW :

PTRI calculated by Wang & Sun

m:

power to which retention time is raised in this formulation

k′Z, k′x :

capacity factors of n-alkanes and the other solutes in Podmaniczky formulation

tm :

holdup time

Ip :

PTRI calculated by Podmaniczky

a, b, c:

parameters of the Podmaniczky parabolas, calculated from three k′Z data

ICH :

PTRI calculated by Chen et alia

T:

solute retention temperature

TZ, TZ+1 :

retention temperatures of the Z and Z+1 n-alkanes

t′R :

adjusted retention times

B′:

parameter obtained by l. r. of the straight lines log (tR) of n-alkanes versus 1/T

α:

thermal coefficient calculated from two isothermal holdup time values

T1, T2:

two isothermal temperatures

p, n:

slope and interception of the l. r. of the straight lines log (tR) against Z

t′R, Z(T), t′R.Z+1 :

(T) corrected retention time for the Z and Z+1 n-alkanes

Il, IC :

PTRI calculated by Eq. (15) and (16), respectively

RID (i):

retention index difference between CS and calculated by the method of Eq. (i)

RID (KOV):

difference between CS PTRI and calculated by Kováts isothermal formula

s 2x :

\(variance = \sum\limits_{i = 1}^N {(RID (i)^2 )/(N - 1)} \)

N:

number of non alkane solutes

VS:

variance summation, parameter taken as a hundred times the sum of variances for the eleven program runs executed

References

  1. E. Kováts, Helv. Chim. Acta,41, 1915 (1958).

    Article  Google Scholar 

  2. H. van den Dool, Kratz, J. Chromatogr.,11, 463 (1963).

    Article  Google Scholar 

  3. R. V. Golovnya, V. P. Uraletz, J. Chromatogr.,36, 276 (1968).

    CAS  Google Scholar 

  4. L. Erdey, J. Takács, E. Szaláncy, J. Chromatogr.,46, 29 (1970).

    Article  CAS  Google Scholar 

  5. I. G. Zenkevich, Zh. Anal. Khim.,39, 1297 (1984).

    CAS  Google Scholar 

  6. T. Wang, Y. Sun, J. Chromatogr.,390, 261 (1987).

    Article  CAS  Google Scholar 

  7. B. Chen, X. Guo, S. Peng, Chromatographia,23, 888 (1987).

    Article  CAS  Google Scholar 

  8. L. Podmaniczky, L. Szepesy, K. Lakszner, G. Schomburg, Chromatographia21, 387 (1986).

    Article  CAS  Google Scholar 

  9. W. A. Halang, R. Langlais, E. Kugler, Anal. Chem.,50, 1829 (1978).

    Article  CAS  Google Scholar 

  10. E. Fernández Sánchez, J. A. García Domínguez, V. Menéndez, J. M. Santiuste, J. Chromatogr.,498, 1 (1990).

    Article  Google Scholar 

  11. P. Kusz, W. Czelakowski, Int. Lab.,92 (1987).

  12. J. Curvers, J. Rijks, C. Cramers, K. Knauss, P. Larson, JHRCand CC,8, 607 (1985).

    CAS  Google Scholar 

  13. E. E. Akporhonor, S. Le Vent, D. R. Taylor, J. Chromatogr.,463, 271 (1989).

    Article  CAS  Google Scholar 

  14. J. C. Giddings, inN. Brenner, J. E. Callen, M. D. Weiss (eds.). Gas Chromatography, Academic Press, New York, p. 57, (1962).

    Google Scholar 

  15. C. Guiochon, Anal. Chem.,36, 661 (1964).

    Article  CAS  Google Scholar 

  16. J. Lee, D. R. Taylor, Chromatographia,16, 286 (1982).

    Article  CAS  Google Scholar 

  17. J. Krupcik, P. Cellar, D. Repka, J. Garaj, G. Guiochon, J. Chromatogr.,351, 111 (1986).

    Article  CAS  Google Scholar 

  18. A. S. Said, JHRC & CC,11, 678, (1988).

    Article  CAS  Google Scholar 

  19. L. S. Ettre, Chroma ographia,18, 243 (1984).

    Article  CAS  Google Scholar 

  20. W. O. McReynolds, J. Chromatogr.,8, 685 (1970).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Domínguez, J.A., Santiuste, J.M. Cubic splines compared with other methods for the calculation of programmed temperature retention indices. Chromatographia 32, 116–124 (1991). https://doi.org/10.1007/BF02325013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325013

Key Words

Navigation