Estimating global solar irradiance for Western Australia, part I

  • T. J. Lyons
  • P. R. Edwards
Article

Summary

Solar irradiance is estimated on the basis of three hourly cloud observations and compared with the measured irradiance. This indicates that it is possible to predict daily global irradiation to within 15% and thus illustrates the potential for extending the solar energy data base available for heliotechnology in Western Australia.

Keywords

Root Mean Square Error Precipitable Water Cloud Amount Cloud Type Total Cloud Amount 

Berechnung der Globalstrahlung für West-Australien, Teil 1

Zusammenfassung

Die Globalstrahlung wird aufgrund von dreistündigen Bewölkungsbeobachtungen berechnet und mit gemessenen Strahlungswerten verglichen. Damit wird gezeigt, daß es möglich ist, Tageswerte der Globalstrahlung bis auf 15% vorherzusagen und auf diese Art das Potential von verfügbaren Daten der Strahlungsenergie für Zwecke der Heliotechnologie in West-Australien zu erweitern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, P., Lyons, T. J.: Solar Radiation Monitoring in Western Australia. Proc.: Solar realities in Western Australia in the 1980's. Internat. Solar Energy Soc. Inc. University of Western Australia, Perth, p. 53–62 (1979).Google Scholar
  2. 2.
    Davies, J. A., Schertzer, W., Nunez, M.: Estimating Global Solar Radiation. Boundary Layer Met.9, 33–52 (1975).CrossRefGoogle Scholar
  3. 3.
    Bureau of Meteorology: Catalogue of Solar Radiation Data, Australia. Australian Gov. Publ. Service, Canberra, 1979.Google Scholar
  4. 4.
    Houghton, H. G.: On the Heat Balance of the Northern Hemisphere. J. Met.11, 1–9 (1954).Google Scholar
  5. 5.
    McDonald, J. E.: Direct Absorption of Solar Radiation by Atmospheric Water Vapour. J. Met.17, 319–328 (1960).Google Scholar
  6. 6.
    Kasten, F.: A New Table and Approximation Formula for the Relative Optical Air Mass. Arch. Met. Geoph. Biokl., Ser. B14, 206–223 (1966).CrossRefGoogle Scholar
  7. 7.
    Lyons, T. J., Forgan, B. W.: Atmospheric Attenuation of Solar Radiation at Adelaide. Quart. J. R. Met. Soc.101, 1013–1017 (1975).CrossRefGoogle Scholar
  8. 8.
    Idso, S. B.: Atmospheric Attenuation of Solar Radiation. J. Atmos. Sci.26, 1088–1095 (1969).CrossRefGoogle Scholar
  9. 9.
    Idso, S. B.: The Transmittance of the Atmosphere for Solar Radiation on Individual Clear Days. J. Appl. Met.9, 239–241 (1970).CrossRefGoogle Scholar
  10. 10.
    Monteith, J. L.: Attenuation of Solar Radiation: a Climatological Study. Quart. J. R. Met. Soc.88, 508–521 (1962).CrossRefGoogle Scholar
  11. 11.
    Duffie, J. A., Beckman, W. A.: Solar Energy Thermal Processes. New York: Wiley 1974.Google Scholar
  12. 12.
    Bugler, J. W.: The Determination of Hourly Solar Radiation Incident upon an Inclined Plane from Hourly Measured Global Horizontal Insolation. Report No. SES 75/4, C.S.I.R.O. Solar Energy Study, Melbourne, 1975.Google Scholar
  13. 13.
    Pierrehumbert, C. L.: Precipitable Water Statistics, Australia. Commonw. Bureau of Meteorology, Met. Summary, Melbourne, 1972.Google Scholar
  14. 14.
    Haurwitz, G.: Insolation in Relation to Cloud Type. J. Met.5, 110–113 (1948).Google Scholar
  15. 15.
    Suckling, P. W., Hay, J. E.: A Cloud Layer — Sunshine Model for Estimating Direct, Diffuse and Total Solar Radiation. Atmosphere15, 194–207 (1977).Google Scholar
  16. 16.
    Gentilli, J.: Climates of Australia and New Zealand. Vol. 13 in World Survey of Climatology, 405 pp. Amsterdam: Elsevier 1971.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • T. J. Lyons
    • 1
  • P. R. Edwards
    • 2
  1. 1.School of Environmental and Life SciencesMurdoch UniversityMurdochWestern Australia
  2. 2.Department of Mines and EnergyDarwinAustralia

Personalised recommendations