, Volume 39, Issue 1, pp 1–24 | Cite as

Self-incompatibility in angiosperms: A review

  • N. T. Arasu


After a survey of the earlier descriptions of incompatibility, the genetical analyses are reviewed of gametophytic-, sporophytic- and heteromorphic incompatibility, of the behaviour in polyploids, and of S-mutations. The cytological observations refer to the site of inhibition of pollen tube growth and nucleate state of the pollen. Modern theories on the biochemical nature of the incompatibility reaction are compared. Finally, some evolutionary aspects are summarized.


Genetical Analysis Pollen Tube Tube Growth Pollen Tube Growth Modern Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, R. M. (1965). Self- and cross-sterility in early round-headed cabbage.Can. J. Pl. Sci. 45: 493–497.Google Scholar
  2. Arasu, N. N. (1967). Studies on overcoming self-and cross-sterility in fruit crops, M. Phil. Thesis, University of London.Google Scholar
  3. Asami, Y. (1926). On the self-sterility of the Japanese pear.Proc. Am. Soc. hort. Sci. 23: 122–127.Google Scholar
  4. Ascher, P. D. (1966). A gene action model to explain gametophytic self-incompatibility.Euphytica 15: 179–183.CrossRefGoogle Scholar
  5. Atwood, S. S. & J. L. Brewbaker (1950). Multiple oppositional alleles in autoploid white clover.Genetics 35: 653 (Abstr.).Google Scholar
  6. Barlow, N. (1913). Preliminary note on heterostylism inOxalis andLythrum.J. Genet. 3: 53–65.Google Scholar
  7. Barlow, N. (1923). Inheritance of the three forms in trimorphic species.J. Genet. 13: 133–146.Google Scholar
  8. Bateman, A. J. (1954), Self-incompatibility systems in Angiesperms. II.Iberis amara.Heredity 8: 305–332.Google Scholar
  9. Bateman, A. J. (1955). Self-incompatibility systems in Angiosperms. III. Cruciferae.Heredity 9: 53–68.Google Scholar
  10. Bateson, W. & R. P. Gregory (1905). On the inheritance of heterostylism inPrimula.Proc. R. Soc. Ser. B76: 581–586.Google Scholar
  11. Beatus, R. (1934). Die Selbststerilität vonCardamine pratensis.Jb. wiss. Bot. 80: 457–504.Google Scholar
  12. Brewbaker, J. L. (1954). Incompatibility in autotetraploidTrifolium repens. I. Competition and self-compatibility.Genetics 39: 307–316.Google Scholar
  13. Brewbaker, J. L. (1957). Pollen cytology and incompatibility systems in plants.J. Hered. 48: 271–277.Google Scholar
  14. Brewbaker, J. L. (1959). Biology of the angiosperm pollen grain.Indian J. Genet. Pl. Br. 19: 121–133.Google Scholar
  15. Brewbaker, J. L. & G. C. Emery (1960). Incompatibility allele mutations.Genetics 45: 978 (Abstr.).Google Scholar
  16. Brewbaker, J. L. & D. D. Gorrez (1967). Genetics of self-incompatibility in the monocot generaAnanas (Pineapple) andGasteria.Am. J. Bot. 54: 611–616.Google Scholar
  17. Brewbaker, J. L. & A. T. Natarajan (1960). Centrie fragments and pollen part mutation of incompatibility alleles inPetunia.Genetics 45: 699–704.Google Scholar
  18. Brock, B. D. (1954). Fertility inLilium hybrids.Heredity 8: 409–420.Google Scholar
  19. Christ, B. (1959). Entwicklungsgeschichtliche und physiologische Untersuchungen über die Selbststerilität vonCardamine pratensis L.Z. Bot. 47: 88–112.Google Scholar
  20. Cope, F. W. (1958). Incompatibility inTheobroma cacao.Nature 181: 279.Google Scholar
  21. Cope, F. W. (1962). The mechanism of pollen incompatibility inTheobroma cacao L.Heredity 17: 157–182.Google Scholar
  22. Crane, M. B. (1925). Self-sterility and cross-incompatibility in plums and cherries.J. Genet. 15: 301–322.Google Scholar
  23. Crane, M. B. & A. G. Brown (1937). Incompatibility and sterility in the sweet cherry,Prunus avium L.J. Pomol. 15: 86–116.Google Scholar
  24. Crane, M. B. & W. J. C. Lawrence (1952). The genetics of garden plants. (4th Ed.), McMilian, London, pp. 301.Google Scholar
  25. Crowe, L. K. (1954). Incompatibility inCosmos bipinnatus.Heredity 8: 1–11.Google Scholar
  26. Crowe, L. K. (1964). The evolution of outbreeding in plants. I. The angiosperms.Heredity 10: 435–457.Google Scholar
  27. Darwin, C. R. (1876), The effect of cross-and self-fertilization in the vegetable kingdom. (2nd Ed., 1916 reprint). John Murray, London, pp. viii + 487.Google Scholar
  28. Darwin, C. R. (1880). The different forms of flowers on plants of the same species. (2nd Ed., 1892 reprint). John Murray, London, pp. xxiv + 352.Google Scholar
  29. Denward, T. (1963). The function of the incompatibility alleles in red clover (Trifolium pratense L.)Hereditas 49: 198–236, 289–335.Google Scholar
  30. East, E. M. (1926). The physiology of self-sterility in plants.J. Gen. Physiol. 8: 403–416.CrossRefGoogle Scholar
  31. East, E. M. (1927). The inheritance of heterostyly inLythrum salicaria.Genetics 12: 393–414.Google Scholar
  32. East, E. M. (1929), Self-sterility.Bibliographia Genstica 5: 331–370.Google Scholar
  33. East, E. M. (1940). The distribution of self-sterility in the flowering plants,Proc. Am. Phil. Soc. 82: 449–518.Google Scholar
  34. East, E. M. & A. Mangelsdorf (1925). A new interpretation of the hereditary behaviour of self-sterile plants.Proc. Nat. Acad. Sci. U.S.A. 11: 166–171.Google Scholar
  35. East, E. M. & J. B. Park (1918). Studies on self-sterility. II. Pollen tube growth.Genetics 3: 353–366.Google Scholar
  36. Fisher, R. A. & K. Mather (1943). The inheritance of style length inLythrum salicaria, Ann. Eugen. 12: 1–23.Google Scholar
  37. Gerstel, D. U. (1950). Self-incompatibility studies in guayule. II. Inheritance.Genetics 35: 482–506.PubMedGoogle Scholar
  38. Habura, E. C. (1957). Parasterilität bei Sonnenblumen.Z. Pflanzenzüchtung 37: 280–298.Google Scholar
  39. Hayman, D. L. (1956). The genetical control of incompatibility inPhalaris coerulescens Desf.Aust. J. Biol. Sci. 9: 321–331.Google Scholar
  40. Heinen, W. & H. F. Linskens (1961). Ensymatie breakdown of stigmatic cuticle of flowers.Nature 191: 1416.Google Scholar
  41. Herbert, W. (1837). Amaryllidaceae. Ridgway and Sons, London, pp. vi + 426.Google Scholar
  42. Hernandez, T. P. & J. C. Miller (1962). Self- and cross-incompatibilities in the sweet potato.Proc. Am. Soc. hort. Sci. 81: 428–432.Google Scholar
  43. Hernandez, T. P. & J. C. Miller (1964). Further studies on incompatibility in the sweet potato.Proc. Am. Soc. hort. Sci. 85: 426–429.Google Scholar
  44. Hughes, M. B. & E. B. Babcock (1950). Self-incompatibility inCrepis foetida L. subsp.rhoeadifolia (Bieb).Genetics 35: 570–588.PubMedGoogle Scholar
  45. Kakizaki, Y. (1930). Studies on the genetics and physiology of self- and crossincompatibility in the common cabbage (Brassica oleracea L. var.capitata L.).Jap. J. Bot 5: 133–208.Google Scholar
  46. Knight, R. & H. H. Rogers (1955). Incompatibility inTheobroma cacao.Heredity 9: 69–77.Google Scholar
  47. Kroh, M. (1956). Genetische und entwicklungsphysiologische Untersuchungen über die Selbststerilität vonRaphanus raphanistrum.Z. indukt. Abstamm.-u. VererbLehre 87: 363–384.Google Scholar
  48. Lewis, D. (1942). The physiology of incompatibility in plants. I. The effect of temperature.Proc. R. Soc. Ser. B131: 13–26.Google Scholar
  49. Lewis, D. (1943). Physiology of incompatibility in plants. III. Autopolyploids.J. Genet. 45: 171–185.Google Scholar
  50. Lewis, D. (1944). Incompatibility in plants, its genetical and physiological synthesis.Nature 153: 575–582.Google Scholar
  51. Lewis, D. (1947). Competition and dominance of incompatibility alleles in diploid pollen.Heredity 1: 85–108.Google Scholar
  52. Lewis, D. (1948). Structure of the incompatibility gene. I. Spontaneous mutation rate.Heredity 2: 219–236.Google Scholar
  53. Lewis, D. (1949a). Incompatibility in flowering plants.Biol. Rev. 24: 472–496.Google Scholar
  54. Lewis, D. (1949b). Structure of the incompatibility gene. II. Induced mutation rate.Heredity 3: 339–355.PubMedGoogle Scholar
  55. Lewis, D. (1951). Structure of the incompatibility gene. III. Types of spontaneous and induced mutations.Heredity 5: 399–414.Google Scholar
  56. Lewis, D. (1952). Serological reactions of pollen incompatibility substances.Proc. R. Soc. Ser. B140: 127–135.Google Scholar
  57. Lewis, D. (1954). Comparative incompatibility in angiosperms and fungi.Adv. Genet. 6: 235–285.PubMedGoogle Scholar
  58. Lewis, D. (1958). Gene control of specificity and activity: loss by mutation and restoration by complementation.Nature 182: 1620–1621.Google Scholar
  59. Lewis, D. (1960). Genetic control of specificity and activity of the S-antigen in plants.Proc. R. Soc. Ser. B151: 468–477.Google Scholar
  60. Lewis, D. (1961). Chromosome fragments and mutation of the incompatibility gene.Nature 190: 990–991.PubMedGoogle Scholar
  61. Lewis, D. (1965). A protein dimer hypothesis on incompatibility. In: Proc. 11th Int. Congr. Genet., Vol.3: 657–663.Google Scholar
  62. Lewis, D., S. Burrage & D. Walls (1967). Immunological reactions of single pollen grains, electrophoresis and enzymology of pollen protein exudates.J. exp. Bot. 18: 371–378.Google Scholar
  63. Lewis, D. & L. K. Crowe (1953). Theory of revertible mutation.Nature 171: 501Google Scholar
  64. Lewis, D. & L. K. Crowe (1954). Structure of the incompatibility gene. IV. Types of mutations inPrunus avium L.Heredity 8: 357–363.Google Scholar
  65. Lewis, D. & L. K. Crowe (1956). Genetics and evolution of gynodiocey.Evolution 10: 115–125.Google Scholar
  66. Linskens, H. F. (1953). Physiological and chemical differences between self-and cross-pollinatedPetunia styles.Naturwissenschaften 40: 28–29.Google Scholar
  67. Linskens, H. F. (1955). Physiologische untersuchungen der Pollenschlauch-Hemmung selbststeriler Petunien.Z. Bot. 43: 1–44.Google Scholar
  68. Linskens, H. F. (1958). Zur Frage der Entstehung der Abwehrkörper bei der Inkompatibilitätsreaktion vonPetunia. I Mitteilung: Versuche zur Markierung der Griffel mit P32-und C14-Verbindungen.Ber. dt. bot. Ges. 71: 3–10.Google Scholar
  69. Linskens, H. F. (1959). Zur Frage der Entstehung der Abwehrkörper bei der Inkompatibilitätsreaktion vonPetunia. 2. Mitteilung: Versuche mit radioaktiv markiertem Pollen.Ber. dt. bot. Ges. 72: 84–92.Google Scholar
  70. Linskens, H. F. (1960). Zur Frage. der Entstehung der Abwehrkörper bei der Inkompatibilitätsreaktion vonPetunia. III. Mitteilung: Serologische Teste mit Leitgewels-und Pollen-Extrakten.Z. Bot. 48: 126–135.Google Scholar
  71. Linskens, H. F. (1965). Biochemistry of incompatibility. In: Proc. 11th Int. Congr. Genet. Vol.3: 629–636.Google Scholar
  72. Linskens, H. F. & K. Esser (1957). Über einen Anfasbung der Pollenschläuche im Griffel und die Zahl der Kallosepfropfen nach Selbstung und Fremdung.Naturwissenschaften 44: 16.CrossRefGoogle Scholar
  73. Linskens, H. F. & J. Tupy (1966). The amino acids pool in the style of selfincompatible strains ofPetunia, after self- and cross-pollination.Züchter 36: 151–158.Google Scholar
  74. Lundqvist, A. (1954). Studies on self-sterility in rye,Secale cereale L.Hereditas 40: 278–294.Google Scholar
  75. Lundqvist, A. (1955). Genetics of self-incompatibility inFestuca pratensis Huds.Hereditas 41: 518–520.Google Scholar
  76. Lundqvist, A. (1956). Self-incompatibility in rye. I. Genetic control in the diploid.Hereditas 42: 293–348.Google Scholar
  77. Lundqvist, A. (1961). Self-incompatibility inFestuca pratensis Huds.Hereditas 47: 542–562.Google Scholar
  78. Lundqvist, A. (1962). The nature of the two-loci incompatibility system in grasses. I. The hypothesis of a duplicative origin.Hereditas 48: 153–168.Google Scholar
  79. Lundqvist, A. (1965). The genetics of incompatibility. In: Proc. 11th Int. Congr. Genet., Vol.3: 637–647.Google Scholar
  80. Maheshwari, P. (1950). An introduction to the embryology of Angiosperms. McGraw-Hill, N.Y., pp. vii + 453.Google Scholar
  81. Mäkinen, Y. L. A. & D. Lewis (1962). Immunological analysis of incompatibility (S) proteins and of crossrcacting material in a self-compatible mutant ofOenothera organensis.Genet. Res. 3: 352–363.Google Scholar
  82. Martin, F. W. (1965). Incompatibility in the sweet potato. A review.Econ. Bot. 19: 406–415.Google Scholar
  83. Modlibowska, I. (1945). Pollen tube growth and embryo-sac development in apples and pears.J. Pomol. 21: 57–89.Google Scholar
  84. Munro, R. (1868). On the reproduction and cross-fertilization of Passifloras.Trans. Proc. bot. Soc. Edinb. 9: 399–402.Google Scholar
  85. Nasrallah, M. E. & D. H. Wallace (1967). Immunological detection of antigen in self-incompatibility genotypes of cabbage.Nature 213: 700–701.Google Scholar
  86. Pandey, K. K. (1956). Mutations of self-incompatible alleles inTrifolium pratense andT. repens.Genetics 41: 327–343.Google Scholar
  87. Pandey, K. K. (1957). Genetics of incompatibility inPhysalis ixocarpa Brot.-a new system.Am. J. Bot. 44: 879–887.Google Scholar
  88. Pandey, K. K. (1958). Time of S-allele action.Nature 181: 1220–1221.PubMedGoogle Scholar
  89. Pandey, K. K. (1960). Evolution of gametophytic and sporophytic systems of self-incompatibility in angiosperms.Evolution 14: 98–115.Google Scholar
  90. Pandey, K. K. (1962a). A theory of S-gene structure.Nature 196: 236–238.Google Scholar
  91. Pandey, K. K. (1962b). Genetics of incompatibility behaviour in the MexicanSolanum species,S. pinnatisectum.Z. VererbLehre 93: 378–388.Google Scholar
  92. Pandey, K.K. (1967). Origin of genetic variability: combination of peroxidase isozymes determine multiple allelism of the S-gene.Nature 213: 669.PubMedGoogle Scholar
  93. Piatnitsky, S. S. (1934). Experiments on self-pollination ofLarix, Acer andQuercus. Transl. U.S. Forest Serv. 290: pp. 22.Google Scholar
  94. Prell, H. (1921). Das Problem der Unbefruchtbarkeit.Naturw. Wschr. N. F.20: 440–446.Google Scholar
  95. Sampson, D. R. (1958). The genetics of self-incompatibility inLesquerella densipila and in the F1 hybridL. densipila x L. lesqurii.Can. J. Bot. 36: 39–56.Google Scholar
  96. Sampson, D. R. (1964). A one-locus self-incompatibility system inRaphanus raphanistrum.Can. J. Genet. Cytol. 6: 435–445.Google Scholar
  97. Schlösser, K. (1961). Cytologische und cytochemische Untersuchungen über das Pollenschlauchwachstum selbststeriler Petunien.Z. Bot. 49: 266–288.Google Scholar
  98. Schnarf, K. (1937). Studien über den Bau der Pollenkörner der Angiosperm.Planta 27: 450–465.CrossRefGoogle Scholar
  99. Scott, J. (1865). On the individual sterility and cross-imprognation of certain species ofOncidium.J. Linn. Soc. Bot. 8: 163–167.Google Scholar
  100. Sears, E. R. (1937). Cytological phenomena connected with self-sterility in the flowering plants.Genetics 22: 130–181.Google Scholar
  101. Silow, R. A. (1931). A preliminary report on pollen tube growth in red clover (Trifolium pratense L.).Bull. Welsh Pl. Br. St., Ser, H, No.12: 228–233.Google Scholar
  102. Sirks, M. J. (1926). Further data on the self- and cross-incompatibility ofVerbascum phoeniceum.Genetica 8: 345–367.Google Scholar
  103. Stanley, R. G. & H. F. Linskens (1965). Protein diffusion from germinating poilen.Physiologia Pl. 18: 47–53.Google Scholar
  104. Starr, R. C. (1954). Inheritance of mating type and a lethal factor inCosmarium botrytis var.subtumidum Witlr.Proc. nat. Acad. Sci. U.S.A. 40: 1060–1063.Google Scholar
  105. Sterbins, C. L. (1950). Variation and evolution in plants. Columbia Univ. Press, N.Y. pp. xx + 643.Google Scholar
  106. Stout, A. B. (1917). Fertility inCichorium intybus. The sporadic appearance of self-fertile plants among the progeny of self-sterile plants.Am. J. Bot. 4: 375–395.Google Scholar
  107. Stout, A. B. & C. Chandler (1933). Pollen tube behaviour inHemerocallis with special reference to incompatibilities.Bull. Torrey bot. Club 60: 397–416.Google Scholar
  108. Tatebe, t. (1959). (Further studies on the inhibiting substance that prevents the self-fertilization of the Japanese radish I).J. hort. Ayss. Japan 28: 288–290.Google Scholar
  109. Thompson, K. F. (1957). Self-incompatibility in marrow-stem kale,Brassica oleracea var.acephala. I. Demonstration of a sporophytic system.J. Genet. 55: 45–60.Google Scholar
  110. Tupy, J. (1959). Callose formation in pollen tubes and incompatibility.Biologia Pl. 1: 192–198.Google Scholar
  111. Tupy, J. (1961). Investigation of free amino-acids in cross-, self- and nonpollinated pistils ofNicotiana alata.Biologia Pl. 3: 47–64.Google Scholar
  112. Ubisch, G. von (1921). Zur Genetic der trimorphen Heterostylie sowie oinige Bemerkungen zur dimorphen Heterostylie.Biol. Zbl. 41: 88–96.Google Scholar
  113. Van der Pluijm, J. & H. F. Linskens (1966). Feinstructur der Pollenschläuche in Griffel vonPetunia.Züchter 36: 220–224.Google Scholar
  114. Waite, M. B. (1895). The pollination of pear flowera.Bull. Div. Veg. Physiol. Path. U.S. Dep. Agric. 5: 1–110.Google Scholar
  115. Whitehouse, H. L. K. (1949). Multiple allelomorph heterothallism in the fungi.New Phytol. 48: 212–244.Google Scholar
  116. Whitehouse, H. L. K. (1950). Multiple allelomorph incompatibility of pollen and style in the evolution of angiosperms.Ann. Bot. N.S.14: 199–216.Google Scholar
  117. Wilkie, D. (1956). Incompatibility in bracken.Heredity 10: 247–256.Google Scholar
  118. Williams, W. (1964). Genetical principles and plant brecding. Blackwell, Oxford, pp. vii + 504.Google Scholar

Copyright information

© Martinus Nijhoff 1968

Authors and Affiliations

  • N. T. Arasu
    • 1
  1. 1.East Malling Research StationMaidstoneEngland

Personalised recommendations