Skip to main content
Log in

Cavitation bubble collapse in nonlinear viscous and viscoplastic media

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of the collapse of a bubble in nonlinear viscous and viscoplastic media under the influence of pressure at infinity is solved numerically. The pressure at which the radius of the bubble begins to decrease, the limiting radius of the bubble in the viscoplastic case and the critical collapse pressure where there is no plastic component are found. The critical pressure is found to be an order smaller than the corresponding value for a Newtonian viscous fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Knapp, J. W. Daily, and F. G. Hammitt,Cavitation, McGraw-Hill, New York (1970).

    Google Scholar 

  2. M. A. Askarov,Cavitational Destruction of Metals and Polymers [in Russian], Sabchota Sakartvelo, Tbilisi (1973).

    Google Scholar 

  3. H. Poritsky, “The collapse or growth of a spherical bubble in a viscous fluid,”Proc. of the First U.S. Nat. Congr. Appl. Mech., 1951, Ann Arbor, Mich. (1952), p. 813.

  4. E. I. Zababakhin, “Filling of bubbles in a viscous fluid,”Prikl. Mat. Mekh.,24, 1129 (1960).

    MATH  Google Scholar 

  5. R. D. Ivany and F. G. Hammitt, “Cavitation bubble collapse in viscous compressible liquids, numerical analysis,”Trans. ASME. Ser. D. J. Basic Eng.,87, 140 (1965).

    Google Scholar 

  6. V. I. Bogorodskaya and V. F. Kuropatenko, “Bubble collapse in a viscous compressible fluid,” in:Proceedings of the Fourth All-Union Seminar on the Numerical Methods of Viscous Fluid Mechanics, Riga 1972 [in Russian], Novosibirsk (1973), p. 162.

  7. M. A. Brutyan and P. L. Krapivskii, “Hydrodynamics of non-Newtonian fluids,” in:Advances in Science and Technology. All-Union Institute of Scientific and Technical Information. Complex and Special Branches of Mechanics Series, Vol. 4 [in Russian] (1991), p. 3.

    Google Scholar 

  8. H. S. Fogler and J. D. Goddard, “Collapse of spherical cavities in viscoelastic fluids,”Phys. Fluids,13, 1135 (1970).

    Article  Google Scholar 

  9. T. B. Benjamin and A. T. Ellis, “Self-propulsion of asymmetrically vibrating bubbles,”J. Fluid Mech.,212, 65 (1990).

    ADS  Google Scholar 

  10. G. Ryskin, “Dynamics and sound emission of a spherical cavitation bubble in a dilute polymer solution,”J. Fluid Mech.,218, 239 (1990).

    ADS  MATH  Google Scholar 

  11. D. V. Georgievskii, “Linearized problem of the stability of viscoplastic bodies with an arbitrary scalar equation,”Vestn. Mosk. Univ. Ser. Mat. Mekh., No. 6, 65 (1992).

    Google Scholar 

  12. B. E. Pobedrya,Numerical Methods in the Theory of Elasticity and Plasticity [in Russian], Moscow State University Press, Moscow (1981).

    Google Scholar 

  13. V. G. Grigor'ev, S. Z. Dunin, and V. V. Surkov, “Collapse of a spherical pore in a viscoplastic material,”Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela., No. 1, 199 (1981).

  14. A. A. Il'yushin, “Some problems of the theory of plastic flow,”Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 2, 64 (1958).

Download references

Authors

Additional information

Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 181–184, March–April, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgievskii, D.V. Cavitation bubble collapse in nonlinear viscous and viscoplastic media. Fluid Dyn 29, 299–302 (1994). https://doi.org/10.1007/BF02324324

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02324324

Keywords

Navigation