Experimental Mechanics

, Volume 11, Issue 5, pp 229–234 | Cite as

Holographic and analytic study of a semiclamped rectangular plate supported by struts

This paper discusses the use of holographic interferometry as an engineering aid in a design evaluation, and demonstrates how holography provides experimental results which the elastician and stress analyst require to justify the mathematical model in an analytical study of the design
  • A. D. Wilson
  • C. H. Lee
  • H. R. Lominac
  • D. H. Strope


The purpose of this paper is to present a comparison of holographically, mechanically and analytically determined deflection of a uniformly loaded semiclamped rectangular plate supported by struts. Double-exposure holographic interferometry provides experimental static deflection as well as force-deflection hysteresis data. The experimental holographic technique is discussed. The analytic solution by method of superposition is also presented.


Mechanical Engineer Fluid Dynamics Analytic Study Rectangular Plate Holographic Interferometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hildebrand, B. P., andHaines, K. A., “Surface Deformation Measurement Using the Wavefront Reconstruction Technique,”Appl. Opt.,5 595–602 (1966).Google Scholar
  2. 2.
    Heflinger, L. O., et al., “Hologram Interferometry,”Jnl. Appl. Phys.,37,642–649 (1966).Google Scholar
  3. 3.
    Horman, M. L., “An Application of Wavefront Reconstruction to Interferometry,”Appl. Opt.,4,333–336 (1965).Google Scholar
  4. 4.
    Burch, J. M., “The Application of Lasers in Production Engineering,”The Production Eng.,44,431 (1965).Google Scholar
  5. 5.
    Collier, R. J., et al, “Application of Moiré Techniques to Holography,”Appl. Phys. Lett.,7,223 (1965).CrossRefGoogle Scholar
  6. 6.
    Brooks, R. E., et al, “Interferometry with a Holographically Reconstructed Comparison Beam,”Appl. Phys. Lett.,7,248–249 (1965).Google Scholar
  7. 7.
    Powell, R. L. andStetson, K. A., “Interferometric Vibration Analysis by Wavefront Reconstruction,”JOSA,55,1593–1598 (1965).Google Scholar
  8. 8.
    Gottenberg, W. G., “Some Applications of Holographic Interferometry,”Experimental Mechanics,8, (9),405–410 (Sept.1968).CrossRefGoogle Scholar
  9. 9.
    Holds, J. H., andFuhs, A. E., “A Refined Analysis of a Holographic Interferogram,”Jnl. Appl. Phys.,38,5408 (1967).Google Scholar
  10. 10.
    Leith, E. andUpatnieks, J., “Wavefront Reconstruction with Continuous Tone Objects,”JOSA,53,1377 (1963).Google Scholar
  11. 11.
    Stetson, K. A., “A Rigorous Treatment of the Fringes of Hologram Interferometry,”Optik,29,386–400 (1969).Google Scholar
  12. 12.
    Tsuruta, T., et alFormation and Localization of Holographically Produced Interference Fringes,”Optica Acta,16,723–733 (1969).Google Scholar
  13. 13.
    Tsuiiuchi, J., et alMesure de la deformation d'un objet par interferometric holographique,”Optica Acta,16,709–722 (1969).Google Scholar
  14. 14.
    Timoshenko, S. andWoinowsky-Krieger, S., Theory of Plates and Shells, 2nd ed., McGraw-Hill Book Co., New York (1959).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1971

Authors and Affiliations

  • A. D. Wilson
    • 1
  • C. H. Lee
    • 1
  • H. R. Lominac
    • 1
  • D. H. Strope
    • 1
  1. 1.Systems Development DivisionInternational Business Machines CorporationEndicott

Personalised recommendations