Skip to main content
Log in

Optical calibration of photoviscoelastic materials on a microsecond time scale

Short-time photoviscoelastic properties are measured using pulse propagation in a rod

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The short-time behavior of viscoelastic materials has been traditionally studied on the millisecond time scale using steady sinusoidal excitation to measure the complex modulus and optical functions. A technique has now been developed for determining the short-time inverse optical-creep function on the microsecond time scale, using wave propagation in a rod. The method is demonstrated by characterizing an epoxy material in the time regime from 1 μs to 100μs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B i :

coefficients in a Galerkin approximation

C :

elastic stress-optic coefficient, Pascals

c :

speed of light, m/s

E :

integrated square error in Galerkin approximation

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{e}\) :

deviatoric strain tensor

e i :

base functions for Galerkin approximation

G :

shear relaxation modulus, Pascals

h :

thickness of model, cm

I i :

initial light intensity, W/m2

I :

measured light intensity, W/m2

K 2 :

polariscope calibration constant, W/m2

L1, L2 :

polariscope stations

M1, M2 :

magnet stations

m :

actual fringe order (measured — residual)

m i :

residual fringe order

m 1 :

measured fringe order

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{n}\) :

deviatoric refraction tensor

n 1 , n 2 :

principal values of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{n}\)

S :

deviatoric stress tensor, Pascals

T :

total test time, s

t :

time, s

α:

angle between direction of polarization and principal axis of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\sigma }\), rad

Δ:

birefringence

\(\delta _{ij}\) :

=1i=j

\(\delta _{ij}\) :

=0i≠j

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\varepsilon }\) :

strain tensor

λ:

wavelength of light, nm

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\sigma }\) :

stress tensor, Pascals

\(\sigma _1 ,\sigma _2\) :

principal values of\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\sigma }\), Pascals

\(\sigma _A\) :

stress calculated from Galerkin approximation, Pascals

τ:

dummy variable of integration

\(\tau _i\) :

characteristic time of base functione i (t), s

Φ:

\(\frac{{2\pi c}}{{h\omega }}\Omega\), Pascals/fringe

ϕ:

isoclinic angle, rad

ψ:

optical-creep function, fringes/Pascal

Ω:

inverse optical-creep function, Pascals

ω:

frequency of light, Hz

References

  1. Nolle, A. W., “Methods for Measuring Dynamic Mechanical Properties of Rubberlike Materials,”Jnl. of Appl. Physics,19,753–774 (1948).

    Article  Google Scholar 

  2. Ferry, L. D., Viscoelastic Properties of Polymers, John Wiley and Sons, Inc., New York (1961).

    Google Scholar 

  3. Gottenberg, W. G. andChristensen, R. M., “An Experiment for the Determination of the Mechanical Property in Shear for a Linear, Isotropic Viscoelastic Solid,”International Jnl. of Engrg. Science,2(1),45–57 (1964).

    Article  Google Scholar 

  4. Stein, R. S., Onogi, S. andKeedy, D. A., “The Dynamic Birefringence of High Polymers,”Jnl. of Polymer Science,57,801–821 (1962).

    Article  Google Scholar 

  5. LeGrand, D. G. andErhardt, P. F., “Rheo-Optical Properies of Polymers,”Trans. Soc. Rheology,6,301–315 (1962).

    Article  Google Scholar 

  6. LeGrand, D. G., “Rheo-Optical Properties of Polymers VI. Dynamic Birefringence,”Jnl. Polymer Science,2,931–942 (1964).

    Google Scholar 

  7. Read, B. E., “A Treatment of Static and Dynamic Bire-fringence in Linear Amorphous Polymers by an Extension of the Molecular Theory of Viscoelasticity,”Polymer,3,143–152 (1962).

    Article  Google Scholar 

  8. Daniel, I. M., “Dynamic Properties of a Photoviscoelastic Material,”Experimental Mechanics,6(5),225–234 (1966).

    Google Scholar 

  9. Daniel, I. M., “Viscoelastic Waves Interaction with a Cylindrical Cavity,”Jnl. of the Engrg. Mech. Div., Proc. of the ASCE,92(EM 6),25–42 (1966).

    Google Scholar 

  10. Daniel, I. M., “Stresses around a Circular Hole in a Viscoelastic Plate Subjected to Point Impact on One Edge,”Developments in Mechanics,3(1),Solid Mech. and Matls.,491–507 (1967).

    Google Scholar 

  11. Sackman, J. L., “Uniformly Progressing Surface Pressure on a Viscoelastic Half-Plane,”Proc. 4th U.S. Nat. Cong. Appl. Mech.,2,1067–1074 (1962).

    Google Scholar 

  12. Chu, B. T., “Stress Waves in Isotropic Linear Viscoelastic Materials,”Jour. de Mechanique,1(4),439–462 (1962).

    Google Scholar 

  13. Valanis, K. C., “Wave Propagation in Viscoelastic Solids with Measured Relaxation or Creep Functions,”Proc. Fourth Int. Cong. on Rheology, Part 2,Interscience Publ, N. Y., 261 (1965).

    Google Scholar 

  14. Dill, E. H., “Photoviscoelasticity,” Mechanics and Chemistry of Solid Propellants, Proc. of the Fourth Symposium on Naval Structural Mechanics, (Edited by Eringen) (1965).

  15. Dill, E. H., and Fowlkes, C., NASA CR 444, (1966).

  16. Sackman, J. L., andKaya, I., “On the Determination of Very Early-Time Viscoelastic Properties,”J. Mech. Phys. Solids,16,212–132 (1968).

    Google Scholar 

  17. Sackman, J. L. andKaya, I., “On the Propagation of Transient Pulses in Linearly Viscoelastic Media,”Jnl. Mech. Phys. Solids,16,349–356 (1968).

    Article  Google Scholar 

  18. Kaya, I., Very Early Time Characteristics of Linear Viscoelastic Materials, PhD Thesis, University of California, Berkeley (1967).

    Google Scholar 

  19. Ripperger, E. A. andYeakley, L. M., “Measurement of Particle Velocities Associated with Waves Propagating in Bars,”Experimental Mechanics,3(2),47–56 (1963).

    Google Scholar 

  20. Peeters, R. L., Dynamic Studies in Photoviscoelasticity, PhD Thesis, University of Washington, Seattle (1973).

    Google Scholar 

  21. Parmerter, R. R. andRahn, J., “A Method of Simultaneously Recording Full-field Isoclinic Patterns at Several Isoclinic Angles,”Experimental Mechanics,11(9),414–417 (1971).

    Google Scholar 

  22. Mathematical Sciences Northwest, “Problems in Impact of Solid Rocket Motors,” MSNW Report No. 70-62-1, Appendix 1, Seattle, Wash. (August 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters, R.L., Parmerter, R.R. Optical calibration of photoviscoelastic materials on a microsecond time scale. Experimental Mechanics 14, 445–451 (1974). https://doi.org/10.1007/BF02324025

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02324025

Keywords

Navigation