Advertisement

Experimental Mechanics

, Volume 14, Issue 11, pp 440–444 | Cite as

Biomechanical study of the constitutive laws of vascular walls

In this study, the static mechanical behaviors of three different arterial walls are examined through the change in external radius due to distending pressure
  • K. Hayashi
  • M. Sato
  • H. Handa
  • K. Moritake
Article

Abstract

Static mechanical behaviors of three different arterial walls were examined through changes in external radius due to distending pressure. In order to examine the distensibility of these vessels, distension ratio was defined as the ratio of eternal radius at each pressure to that at zero pressure. Linear relations were observed between the logarithmic pressure and the distension ration, and they were described by on exponential function. Two parameters used in this equation were related quantitatively to the area fraction of elastin or collagen component occupied in the cross section of wall. Stress-strain relation was then determined from their pressure-diameter data by using finite-deformation theory. An exponential function was established between tangential stress and tangenital strain. These results can be used to study the resistance of arterial walls to cardio-vascular disease.

Keywords

Collagen Mechanical Engineer Fluid Dynamics Mechanical Behavior Exponential Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stehbens, W. E., Pathology of the Cerebral Blood Vessels, C. V. Mosby Company, St. Louis (1972).Google Scholar
  2. 2.
    Simon, B. R., Kobayashi, A. S., Strandness, D. E. andWiederhielm, C. A., “Large Deformation Analysis of the Arterial Cross Section,”J. Basic Engr.,93,138–146 (1971).Google Scholar
  3. 3.
    Ferguson, G. G., “Physical Factors in the Initiation, Growth, and Rupture of Human Intracranial Saccular Aneurysms,”J. Neurosurgery,37,666–677 (1972).Google Scholar
  4. 4.
    Roach, M. R. andBurton, A. C., “The Reason for the Shape of the Distensibility Curves of Arteries,”Can. J. Biochem. Physiol.,35,681–690 (1957).PubMedGoogle Scholar
  5. 5.
    Peterson, L. H., Jensen, R. E. andParnell, J., “Mechanical Properties of Arteries in Vico,”Circulation Res.,8,622–639 (1960).Google Scholar
  6. 6.
    Bergel, D. H., “The Static Elastic Properties of the Arterial Wall,”J. Physiol.,156,445–457 (1961).Google Scholar
  7. 7.
    Simon, B. R., Kobayashi, A. S., Strandness, D. E. andWiederhielm, C. A., “Reevaluation of Arterial Constitutive Relation—A Finite-Deformation Approach,”Circulation Res.,30,491–500 (1972).PubMedGoogle Scholar
  8. 8.
    Hayashi, K., Sato, M., Handa, H. andMoritake, K., J. Soc. Mat. Sci., Japan,23,437–443 (1974).Google Scholar
  9. 9.
    Hayashi, K., Sato, M., Handa, H. and Moritake, K., “Biomechanical Study of Vascular Walls (Testing Apparatus of Mechanical Behavior of Vascular Walls and Measurement of Volume Fraction of Their Structural Components),” Proc. 16th Japan Congress on Mat. Res., 240–244 (1973).Google Scholar
  10. 10.
    Wolinsky, H. andGlagov, S., “Structural Basis for the Static Mechanical Properties of the Aortic Media,”Circulation Res.,14,400–413 (1964).PubMedGoogle Scholar
  11. 11.
    Hayashi, K., Sato, M., Ishii, I., Handa, H., Mori, K. andMoritake, K., “Biomechanical Study of Vascular Walls (Distensibility of Vascular Walls and Structure Observation),”J. Soc. Mat. Sci., Japan,21,1030–1036 (1972).Google Scholar
  12. 12.
    Apter, J. T. andCummings, D. H., “Correlation of Viscoelastic Properties of Large Arteries with Microscopic Structure,”Circulation Res.,19,104–121 (1966).Google Scholar
  13. 13.
    Green, A. E. andZerna, W., Theoretical Elasticity, Oxford Univ. Press, London (1968).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1974

Authors and Affiliations

  • K. Hayashi
    • 1
  • M. Sato
    • 1
  • H. Handa
    • 2
  • K. Moritake
    • 2
  1. 1.Department of Mechanical EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of NeurosurgeryKyoto University, Medical SchoolKyotoJapan

Personalised recommendations