Experimental Mechanics

, Volume 24, Issue 4, pp 257–264 | Cite as

The determination of the components of the strain tensor in holographic interferometry

  • C. A. Sciammarella
  • R. Narayanan
Article

Abstract

The general problem of obtaining the derivatives of the displacements in holographic interferometry is analyzed. Expressions for the most general case are derived and a particular solution is suggested. A data-reduction method is proposed. Application examples are given.

Keywords

Mechanical Engineer Fluid Dynamics General Problem Strain Tensor Holographic Interferometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sciammarella, C.A. andGilbert, J.A., “Strain Analysis of a Disk Subjected to Diametral Compression by Means of Holographic Interferometry,”Appl. Opt.,12,1951–1956 (Aug.1973).Google Scholar
  2. 2.
    Sciammarella, C.A. andGilbert, J.A., “A Holographic Moiré Technique to Obtain Separate Patterns for Components of Displacement,”Experimental Mechanics,16 (6),215–220 (June1976).Google Scholar
  3. 3.
    Sciammarella, C.A. andChawla, S.K., “Holographic Moiré Technique to Obtain Displacement Components and Derivatives,”Experimental Mechanics,18 (10),373–381 (Oct.1978).CrossRefGoogle Scholar
  4. 4.
    Bigl, D. and Jones, R., “A New Theory for the Practical Interpretation of Holographic Interference Patterns Resulting From Static Surface Displacements,” Opt. Acta,21 (2), (1974).Google Scholar
  5. 5.
    Stetson, K.A., “Homogeneous Deformations: Determination by Fringe Vectors in Hologram Interferometry,” Appl. Opt.,14 (1975).Google Scholar
  6. 6.
    Stetson, K.A., “The Relationship Between Strain and Derivations of Observed Displacements in Coherent Optics Metrology,” Appl. Opt.,14 (1975).Google Scholar
  7. 7.
    Pryputniewics, R.G., “Holographic Strain Analysis: An Implementation of the Fringe Vector Theory,” Appl. Opt.,17 (1978).Google Scholar
  8. 8.
    Schumann, W. and Dubas, M., “Holographic Interferometry,” Springer Series in Optical Sciences, Springer (1979).Google Scholar
  9. 9.
    Charmet, J.C., “Interferometrie holographique appliquée à l'analyse des structures sous contrainte: Determination de l'etat de deformation, en particulier par l'etude du contraste de l'interferogramme,”Thesis, Université P. and M. Curie, Paris (1977).Google Scholar
  10. 10.
    Charmet, J.C., “Interferometrie holographique sur objets dispersant: Application de la mesure du contraste à la determination des gradients de displacement,” Rev. Phys. Appl.,12 (1977).Google Scholar
  11. 11.
    Ebbeni, J. and Charmet, J.C., “Strain Components Obtained from Contrast Measurement of Holographic Interferometry Patterns,” Appl. Opt.,16 (1977).Google Scholar
  12. 12.
    Dandliker, R., Ineichen, B. and Mastner, T., “Quantitative Strain Measurement through Holographic Interferometry,” 1977 SESA Spring Meeting, Dallas, TX (May 1977).Google Scholar
  13. 13.
    Dandliker, R., andEliasson, B., “Accuracy of Heterodyne Holographic Strain and Stress Determination,”Experimental Mechanics,19 (3),93–101 (March1979).CrossRefGoogle Scholar
  14. 14.
    Durelli, A.J. and Parks, V.J., “Moiré Analysis of Strain,” Prentice-Hall (1970).Google Scholar
  15. 15.
    Sciammarella, C.A. and Chawla, S.K., “Holographic Moiré Technique to Obtain Displacement Components and Derivatives,” Mech. Res. Comm.,4 (5), (1977).Google Scholar
  16. 16.
    Sciammarella, C.A. andSturgeon, D.L., “Digital Filtering Techniques Applied to the Interpolation of Moiré,”Experimental Mechanics,7 (11),468–475 (Nov.1967).Google Scholar
  17. 17.
    Sciammarella, C.A., “A Numerical Technique of Data Retrieval from Moiré or Photoelastic Patterns,” Proc. SPIE Seminar-in-depth Pattern Recognition Studies,18 (1969).Google Scholar
  18. 18.
    Sciammarella, C.A. and Ronlands, E., “Numerical and Analog Techniques to Retrieve and Process Fringe Information,” Proc. 5th Int. Conf. in Experimental Stress Analysis, Udine, Italy (1974).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1984

Authors and Affiliations

  • C. A. Sciammarella
    • 1
  • R. Narayanan
    • 2
  1. 1.Mechanical Engineering DepartmentIllinois Institute of TechnologyChicago
  2. 2.Structural Engineering Research InstituteCISR Campus, ADYARMadrasIndia

Personalised recommendations