Skip to main content
Log in

Overdetermined photoelastic solutions using least squares

The least-squares solution method is presented to include excess information for overdetermined solutions to stress-distribution problems using transmitted-light photoelasticity

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The least-squares method is presented for obtaining an overdetermined solution from the various relationships available in photoelastic stress analysis. Equations are presented for incorporating the various relations into a weighted least-squares solution and advantages of this method are illustrated in two example problems. In addition to the greater accuracy possible in the overdetermined solution, the method permits weighting of the varied information and eliminates the need to separately determine the stress-optical constant. Variations of the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Businger, P. andGolub, G. H., “Linear Least Squares Solutions Using Householder Transformations, Numerische Mathematik,7,269–276 (1965).

    Article  Google Scholar 

  2. Frocht, M. M., Photoelasticity,1,Ch. 8,John Wiley & Sons, Inc.,New York (1941).

    Google Scholar 

  3. Dally, J. W. andRiley, W. F., Experimental Stress Analysis, McGraw-Hill Book Company, Inc., New York, 236–238 (1965).

    Google Scholar 

  4. Vadovic, F., “Contribution to the Analysis of Errors in Photoelasticity,”Experimental Mechanics,5 (12),413–416 (1965).

    Google Scholar 

  5. Lewis, J. A. andPollock, H. O., “Photoelastic Calculations by a Complex Variable Method,”Zeitschrift fur Angewandte Mathematik und Physik,12,30–37 (1961).

    Article  Google Scholar 

  6. Leland, O. M., Practical Least Squares, McGraw-Hill Book Company, Inc., New York, 17–39 (1921).

    Google Scholar 

  7. Frocht, M. M., op. cit.,.1–21 156.

    Google Scholar 

  8. Timoshenko, S. P. andGoodier, J. N., Theory of Elasticity, McGraw-Hill Book Company, Inc., New York, 22 (1951).

    Google Scholar 

  9. Thomas, G. B., Calculus and Analytical Geometry, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 107–110 (1953).

    Google Scholar 

  10. Timoshenko, S. P. andGoodier, J. N., op. cit., 214.

    Google Scholar 

  11. Frocht, M. M., op. cit.,,174–175.

    Google Scholar 

  12. Dally, J. W. andRiley, W. F., op. cit.,,209–213.

    Google Scholar 

  13. Frocht, M. M., op. cit.,.

    Google Scholar 

  14. Frocht, M. M., Photoelasticity,2,John Wiley and Sons, Inc.,New York,129–134 (1948).

    Google Scholar 

  15. Ibid,,8–10.

    Google Scholar 

  16. Ibid,,240.

    Google Scholar 

  17. Berghaus, D. G., Ph.D. Thesis, Case Western Reserve University, Cleveland, OH, Appendix C (1970).

    Google Scholar 

  18. Todd, J., Survey of Numerical Analysis, McGraw-Hill Book Company, Inc., New York, 388–389 (1962).

    Google Scholar 

  19. Frocht, M. M., op. cit.,,266–268.

    Google Scholar 

  20. Isaacson, E. andKeller, H. B., Analysis of Numerical Methods, John Wiley and Sons, Inc., New York, 315–318 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berghaus, D.G. Overdetermined photoelastic solutions using least squares. Experimental Mechanics 13, 97–104 (1973). https://doi.org/10.1007/BF02323966

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323966

Keywords

Navigation