Skip to main content
Log in

A review of the rheo-optical properties of linear high polymers

Paper covers the essential mechanical and optical properties of high polymers in order to clarify important features useful in applications

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Some principles ans laws, expressing the mechanical and optical behavior of linear viscoelastic materials, are reviewed. The mechanical properties of the polymers in the transition region may be represented by a condensed general method containing Ferry's modulus or compliance-reduction scheme, the time-temperature superposition principle and the Gauss error integral representation. The optical behavior of high polymers is expressed by the stress- and strain-optical coefficients in creep or relaxation, which relate birefringence to stresses or strains.

It was recently shown experimentally that, instead of a pair of independent linear differential operator relations, which characterize the mechanical properties of the viscoelastic materials, only one operator relation is needed and the initial value of another at the glassy or rubbery state. Then, a single test is sufficient for the complete determination of the mechanical and optical viscoelastic behavior, provided the value of another elastic constant at the glassy or rubbery state is also determined and the variation of birefringence with time is simultaneously measured with the mechanical-characteristic quantities of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, A. E., andRivlin, R. S., “The Mechanics of Non-Linear Materials with Memory,”Archive of Rational Mechanics and Analysis,1,1–21 (1957).

    MathSciNet  Google Scholar 

  2. Lee, E. H., “Viscoelastic Stress Analysis,”Structural Mechanics, Proc. of the First Symposium on Naval Structural Mechanics, Pergamon Press, New York, 456–482 (1960).

    Google Scholar 

  3. Schapery, R. A., “An Approximate Method of Stress Analysis for a Large Class of Problems in Viscoelasticity,” Purdue Univ., A and ES Report 62-18 (April 1963).

  4. Alfrey, T., andDoty, P., “The Methods of Specifying the Properties of Viscoelastic Materials,”Jnl. Appl. Phys.,16,700–713 (1945).

    MathSciNet  Google Scholar 

  5. Schapery, R. A., “Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis,” Proc. 4th U. S. Natl. Cong. Appl. Mech., 1075–1085 (1962).

  6. Schwarzl, F., “Näherungsmethoden in der Theorie des Visco-elastischen Verhaltens I,”Physica,17,830–840 (1951).

    MATH  Google Scholar 

  7. Schwarzl, F., “The Accurate Determination of Relaxation Spectra,” Proc. 2nd. Intl. Cong. on Rheology, 197–202 (1954).

  8. Roesler, F. C., andPearson, J. R. A., “Determination of Relaxation Spectra from Damping Measurements,”Proc. Phys. Soc., Series B, LXVII, 338–347 (1954).

    Google Scholar 

  9. Roesler, F. C., “Some Applications of Fourier Series in the Numerical Treatment of Linear Behavior,”Proc. Phys. Soc., Series B, LXVIII, 89–96 (1955).

    MathSciNet  Google Scholar 

  10. Lee, E. H., and Rogers, T. G., “Solution of Viscoelastic Stress Analysis Problems Using Measured Creep and Relaxation Functions,” Project No. 1892-E Report No. 1 (August 1961).

  11. Valanis, K. C., and Lianis, G., “A Method of Analysis of Transient Thermal Stresses in Thermorheologically Simple Viscoelastic Solids,” Jnl. Appl. Mech., paper 63-WA-38.

  12. Boltzmann, L., “Zur Theorie der Elastichen Nachwirkung,”Annalen der Physik und Chemie, Ergänzungsband No. 7, 624–654, (1876).

    Google Scholar 

  13. Andrews, R. D., andTobolsky, A. V., “Elastoviscous Properties of Isobutylene IV. Relaxation Time Spectrum and Calculation of the Bulk Viscosity,”Jnl. Polymer Sci.,7 (2 and 3),221–242 (1951).

    Google Scholar 

  14. Tobolsky, A. V., andMcLoughlin, J. R., “Elastoviscous Properties of Polyisobutylene. V. The Transition Region,”Jnl. Polymer Sci. 8,543–553 (1952).

    Google Scholar 

  15. Catsiff, E., andTobolsky, A. V., “Stress Relaxation of Polyisobutylene in the Transition Region,”Jnl. Colloid Sci.,10,375–392 (1955).

    Google Scholar 

  16. Fitzgerald, E. R., Grandine, L. D., andFerry, J. D., “Dynamic Mechanical Properties of Polyisobutylene,”Jnl. Appl. Phys.,24,650–655 (1953).

    Google Scholar 

  17. Ferry, J. D., Grandine, L. D., andFitzgerald, E. R., “The Relaxation Distribution Function of Polyisobutylene in the Transition from Rubber-like to Glass-like Behavior,”Jnl. Appl. Phys.,24,911–916 (1953).

    Google Scholar 

  18. McLoughlin, J. R., andTobolsky, A. V., “The Viscoelastic Behavior of Polymethyl Methacrylate,”Jnl. Colloid Sci.,7,555–568 (1952).

    Google Scholar 

  19. Bischoff, J. R., Catsiff, E., andTobolsky, A. V., “Elastoviscous Properties of Amorphous Polymers in the Transition Region. I.,”Jnl. Amer. Chem. Soc.,74,3378–3381 (1952).

    Google Scholar 

  20. Catsiff, E., and Tobolsky, A. V., Technical Report RLT-21 to the ONR (December 1956).

  21. Theocaris, P. S., andMylonas, C., “Viscoelastic Effects in Birefringent Coatings,”Jnl. Appl. Mech., 28, Trans. ASME, 83, 601–607 (December 1961).See also discussion Jnl. Appl. Mech. 29,Trans. ASME, 84, 598–603 (September 1962).

    Google Scholar 

  22. Theocaris, P. S., “Viscoelastic Properties of Epoxy Resins Derived from Creep and Relaxation Tests at Different Temperatures,” Brown Univ., Div. of Engrg. Report NSF-G 8188/1 (April 1960). See also Rheologica Acta, 2 (2), 92–96 (March 1961), and Dill, E. H., “On Phenomenological Rheo-Optic Constitutive Relations,” Jnl. Polymer, Sci., Part C, 5, 67–74 (1964).

  23. Theocaris, P. S., “The Rheologic Behavior of Epoxy Resins in their Transition Region,” Brown Univ., Div. of Engrg. Report NSF-G 8188/3 (May 1960). See also Jnl. Appl. Polymer Sci.,8 (1), 399–412 (January 1964).

  24. Theocaris, P. S., Discussion on the paper “Extended Frozen Stress Method,” by J. Schwaighofer (Proc. Paper 3351).Proc. Am. Soc. Civil Engrs., 89, EM 4, 73–77 (1963).See also a recently appeared paper by Williams, M. L., and Arenz, R. J., “The Engineering Analysis of Linear Photoviscoelastic Materials,” Experimental Mechanics,4 (9), 249–262 (1964), where the authors describe relations holding between stress, strain and optical coefficients.

    Google Scholar 

  25. Theocaris, P. S., and Chr. Hadjijoseph, “Viscoelastic Behavior of Plasticized Epoxy Polymers in their Transition Region,” paper presented at the 4th Intl. Cong. of Rheology, Brown Univ. (August 1963).

  26. Leaderman, H., “Elastic and Creep Properties of Filamentous Materials,”Textile Foundation, Washington, D. C., 76 (1943).

    Google Scholar 

  27. Ferry, J. D., “Mechanical Properties of Substances of High Molecular Weight. VI. Dispersion in Concentrated Polymer Solutions and its Dependence on Temperature and Concentration,”Jnl. Am. Chem. Soc.,72,3746–3752 (August 1950).See also Ferry, J. D., and Fitzgerald, E. R., Jnl. Colloid Sci.,8,226–232 (1953).

    Google Scholar 

  28. Tobolsky, A. V., andAndrews, R. D., “Systems Manifesting Superposed Elastic and Viscous Behavior,”Jnl. Chem. Phys.,13 (1),3–27 (January 1945).

    Google Scholar 

  29. Theocaris, P. S., “Creep and Relaxation Contraction Ratio of Linear Viscoelastic Materials,”Jnl. Mech. Phys. Solids,12,125–138 (1964).

    Google Scholar 

  30. Tobolsky, A. V., andCatsiff, E., “Elastoviscous Properties of Polyisobutylene (and Other Amorphous Polymers) from Stress-Relaxation Studies IX. A Summary of Results,”Jnl. Polymer Sci.,19,111–121 (1956).

    Google Scholar 

  31. Williams, M. L., and Schapery, R. A., “Studies of Viscoelastic Media,” ARL Report 62-366 (June 1962).

  32. Lindsey, G. H., Schapery, R. A., Williams, M. L., and Zak, A. R., “The Triaxial Tension Failure of Viscoelastic Materials,” ARL Report 63–152 (September 1963).

  33. Schwarzl, F., “Linear Viscoelastic Behavior of Isotropic Materials I.”Kolloid Zeitschrift,148 (1 and 2),47–57 (1956).

    Google Scholar 

  34. Bischoff, J., Catsiff, E., andTobolsky, A. V., “Elastoviscous Properties of Amorphous Polymers in the Transition Region I.”Jnl. Am. Chem. Soc.,74,3378–3381 (1952).

    Google Scholar 

  35. Tobolsky, A. V., andCatsiff, E., “Reduced Equation for Viscoelastic Behavior of Amorphous Polymers in the Transition Region,”Jnl. Am. Chem. Soc.,76,4204–4208 (1954).

    Google Scholar 

  36. Williams, M. L., Landel, R. F., andFerry, J. D., “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids,”Jnl. Am. Chem. Soc.,77,3701–3707 (1955).

    Google Scholar 

  37. Marvin, R. S., “A New Approximate Conversion Method for Relating Stress Relaxation and Dynamic Modulus,”Phys. Rev., 86, 644 (1952).

    Google Scholar 

  38. Hopkins, I. L. andHamming, R. W., “On Creep and Relaxation,”Jnl. Appl. Phys.,28,906–909 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theocaris, P.S. A review of the rheo-optical properties of linear high polymers. Experimental Mechanics 5, 105–114 (1965). https://doi.org/10.1007/BF02323947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323947

Keywords

Navigation