Skip to main content
Log in

Fractographic methods in fatigue research

Paper reviews several fractographic methods and their applications in different fields of fatigue research. Also, it shows advantages gained in a fatigue-testing program for materials, structure and components

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wood, W. A., “Mechanism of Fatigue,”in A. M. FreudenthalFatigue in Aircraft Structures,”Academic Press Inc., New York (1956).

    Google Scholar 

  2. Wood, W. A., “Some Basic Studies of Fatigue in Metals,”inFracture,”John Wiley, New York;Chapman & Hall, London (1959).

    Google Scholar 

  3. Forsyth, P. J. E., “The Mechanism of Fatigue in Aluminum and Aluminum Alloys,”in A. M. Freudenthal, “Fatigue in Aircraft Structures,”Academic Press Inc., New York (1956).

    Google Scholar 

  4. Hempel, M., Kochendoerfer, A., andHillnhagen, E., “Einfluss der Kristallorientierung auf die Ausbildung von Gleitspuren und der Oberflaeche biegewechselbeanspruchter Eisen-Einkristallproben,”Archiv f. d. Ehw, 28, 433–444 (1957).

    Google Scholar 

  5. Friedel, J., “The Mechanism of Work-hardening and Slip-band Formation,”Proc. of the Royal Soc. London, 242, 147–159 (1957).

    Google Scholar 

  6. Gohn, G. R., “Fatigue of Metals: Part 1—The Mechanism of Fatigue,”Materials Research and Standards, 3, 106–115 (1963).

    Google Scholar 

  7. Head, A. K., “The Growth of Fatigue Cracks,”Phil. Mag., Series 7,44 (356),925–938 (1953).

    MATH  Google Scholar 

  8. Orowan, E., “Theory of the Fatigue of Metals,”Proc. Roy. Soc., 171, 79–106 (1939).

    MATH  Google Scholar 

  9. Forsyth, P. J. E., andRyder, D. A., “Some Results of the Examination of Aluminum Alloy Specimen Fracture Surfaces,”Metallurgia, 63, 117–127 (1961).

    Google Scholar 

  10. Forsyth, P. J. E., “A Two Stage Process of Fatigue Crack Growth,” in “Symposium on Crack Propagation,” Cranfield (1961).

  11. Frost, N. E., Holden, J., and Phillips, C. E., “Experimental Studies into the Behavior of Fatigue Cracks,” in “Symposium on Crack Propagation,” Cranfield (1961).

  12. Frost, N. E., Holden, J., and Phillips, C. E., “Experimental Studies into the Behaviour of Fatigue Cracks” in “Konferenz der Uhgarischen Akademie der Wissenschaften für zeitgemässe Dimensionierung,” Budapest (1961).

  13. Matting, A., andJacoby, G., “Die Zerrüttung metallischer Werkstoffe bei Schwingbeanspruchung in der Fraktographie,”Aluminum, 38, 654–667 (1962).

    Google Scholar 

  14. Quest, G., “Quantitative Bestimmung der Belastung und Lastspielzahl aus der Oberfläche von Dauerbrüchen,”Der Maschineenschaden, 33, 4–12 and 33–44 (1960).

    Google Scholar 

  15. Gassner, E., “Betriebsfestigkeit. Eine Bemessungsgrundlage für Konstruktionsteile mit statistisch wechselnden BetriebsbeanspruchungenKonstruktion, 6, 97–104 (1954).

    Google Scholar 

  16. Gassner, E., “Effect of variable Load and cumulative Damage in Vehicle and Airplane Structures,” in “International Conference on Fatigue of Metals,” London (1956).

  17. Zappfe, C. A., and Worden, S. O., “Fractographic Registration of Fatigue,” A.S.M. preprint (1950).

  18. Zappfe, C. A., “Hydrogen Theory for brittle ship plate,”Metal Progress, 59, 802–808 (1951).

    Google Scholar 

  19. Crussard, C., Borione, R., Plateau, J., Moriton, Y., andMaratray, F., “Une analyse de l'essai de resilience et du mechanisme des ruptures fragiles,”Rev. de Metallurgie, 53, 426–430 (1956).

    Google Scholar 

  20. Werner, O., andHunger, J., “Elektronenoptische Untersuchungen an Stahlbruchflächen,”Archiv f. d. Ehw., 27, 645–656 (1956).

    Google Scholar 

  21. Plateau, J., Crussard, C., Faguet, J., Henry, G., Weisz, M., Sertour, G., and Esquerre, E., “Etude Microfractographique des surfaces de rupture par fatigue,” Rev. de Metallurgie, 677–695 (1958).

  22. Crussard, C., Plateau, J., Tamhankar, R., Henry, G., and Lajuenesse, D., “A comparison of Ductile and Fatigue Fractures,” in “Fracture,” London; new York (1959).

  23. Kocánda, S., “Uber die Microstructur der Dauerbrüche von Khlenstoffstählen,” preprint of a lecture to be given on Symposium “Wechselfestigkeit der Metalle,” Warszawa (1960).

  24. Tokuda, A., “Observation of the Eatigue Fracture Surface of some Carbon Steels by Electron Microscope,”Trans. of JSME, 1, 108–114 (1960).

    Google Scholar 

  25. Mencarelli, E., and Jaquet, P. A., “Metallographic—Technique non destructive pour l'etude des surfaces des cassures du microscope électronique,” Compte rendu de séances de l'Academie des Sciences, 2477–2479 (1959).

  26. de Leiris, H., “Comment l'analyse des cassures perment de preciser le processus des ruptures par fatigue des constructions réelees,” Symposium sur la Fatigue, Prague (1960).

  27. Forsyth, P. J. E., andRyder, D. A., “Fatigue Fracture,”Aircraft Engineering, 32, 96–99 (1960).

    Google Scholar 

  28. Jacoby, G., “Observation of crack propagation on Fatigue fracture surfaces,” Third JCAF/AGARD Symposium, Rome (1963).

  29. Crussard, C., Contribution to the discussion in “The International Conference of fatigue of metals,” London, 784 (1956).

  30. Oschatz, H., “Gesetzmaessigkeiten des Dauerbruches und Wege zur Steigerung der Dauerhaltbarkeit gekerbter Konstruktionen,” Mittlg. d. MPA Darmstadt (1932).

  31. Demer, L. J., “Review of Experimental Data on the Iniitation and Propagation of Fatigue Cracks in Test Specimens,” WADC Techn. Rep., 55–88, Part 2 (1955).

  32. Pohl, E. J., “Das Gesicht des Bruches metallischer Werkstoffe,”3 Bd., Allianz-Versicherung Berlin-München (1956).

    Google Scholar 

  33. Cotell, G. A., “Lessons to be learned from failures in Service,” in “International Conference on Fatigue of Metals,” London (1956).

  34. Longson, J., “A Photographic Study of the Origin and Development of Fatigue Fractures in Aircraft Structures,” RAE Rep. Structures, 267 (1961).

  35. Mencarelli, E., “Extension de l'Analyse Microfractographique aux Cassures des pieces avariés en service,” Ass. Techn. et Aeron, Paris (1961).

  36. Matting, A., andReseler, J., “Zum Brunch einer Rohöl-Rohrleitung,”Rohre, Rohrleitungsbau, Rohrleitungstransport, 1, 53–64 (1962).

    Google Scholar 

  37. Haas, T., “Spectrum Fatigue Tests on Typical Wing Joints,”Materialprüfung, 2, 1–17 (1960).

    MathSciNet  Google Scholar 

  38. Ryman, R.J., “Programme Load Fatigue Tests,”Aircraft Engineering 34 (396),34–42 (1962).

    Google Scholar 

  39. Matting, A. andJacoby, G., “Uber das Verhalten von Schweibverbindungen aus Aluminum-legierungen bei Schwingbeanspruchung,”Alluminum, 38, 171–181, 222–230, 309–319 (1962).

    Google Scholar 

  40. Schijve, J., Brock, D., and de Rijk, P., “The Effect of the Frequency of an alternating load on the Crack Rate in a light alloy sheet,” N.L.L. (Holland)—TN M 2092 (1961).

  41. Matting, A. andJacoby, G., “Betriebsfestigkeitsprüfung mit programmgesteuerten hydraulischen Schwingprüfmaschinen,”Materialprüfung, 4, 117–129 (1962).

    Google Scholar 

  42. Palmgren, A., “Die Lebensdauer von KugellagernVDJ-Zeitschrift, 69, 339–341 (1924).

    Google Scholar 

  43. Miner, M. A., “Cumulative Damage in Fatigue,” Jnl. Appl. Mech. A 159–169 (1945).

  44. Schijve, J., and Jacobs, F. A., “Program-Fatigue Tests on Notched Light Alloy Specimens of 2024 and 7075 Material,” NLL-TRM 2070 (1960).

  45. Schijve, J., “The estimation of the fatigue performance of aircraft structures,” ASTM Spe. Techn. Publ., 338 (1963).

  46. Gassner, E., and Horstman, K. F., “Der Einfluss des Start-Lande-Lastwechsels auf die Lebensdauer der böenbeanspruchten Flügel von Verkehrsflugzeugen,” Lecture, presented at the Sec. Intl. Cong. Aero. Sciences, Zuerich (1960). R.A.E. Library Translation no. 933, February, 1961.

  47. Finney, J. M., andMann, J. Y., “Fatigue Behaviour of Notched Aluminum Alloy Specimens under Simulated Random Cast Loading with and without Ground-to-air Cycles of Loadingin W. Barrois, E. L. RipleyFatigue of Aircroft Structures,”Pergamon Press, New York (1963).

    Google Scholar 

  48. Shijve, J., Brock, D., and de Rijk, P., “Fatigue Crack Propagation under Variable-Amplitude Loading,” NLL (Holland)-TN M 2094 (1961).

  49. Hardrath, H. F., and McEvily, A. J., “Engineering Aspects of Fatigue Crack Propagation” in “Symposium on Crack Propagation,” Cranfield (1961).

  50. Christensen, H. R., “Fatigue Cracking, Fatigue Damage and Their Detection,”in G. Sines, J. L. WaismanMetal Fatigue,”McGraw-Hill Book Co., New York (1959).

    Google Scholar 

  51. Matting, A., andWolf, H., “Fortschreiten von Rissen in Stählen bei Dauerschwingbeanspruchung,”Materialprüfung, 3, 51–62 (1961).

    Google Scholar 

  52. Jacoby, G., “Mikrofraktographische Verfahren bei der Untersuchung des Ribortschrittes und der Schadenakkumulation,”DVL-Nachrichten, 21/22, 10–12 (Juni,1963).

    Google Scholar 

  53. Philips, A., and Bennett, G. V., “The Electron Microscope—a new Tool for Examining Fractures,” Metal Progress, 97–102 (1961).

  54. Technical Bulletin F 61.6 of Trüb, Taüber-Factory, Zuerich, Swtz.

  55. McGrath, J. T., Buchanan, J. G., andThorsten, R. C. A., “A Study of Fatigue and Impact Fractures with the Scanning Electron Microscope,”Jnl Inst. of Metals, 91, 34–39 (1962-1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacoby, G. Fractographic methods in fatigue research. Experimental Mechanics 5, 65–82 (1965). https://doi.org/10.1007/BF02323211

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323211

Keywords

Navigation