Skip to main content
Log in

Instrumented tensile-impact tests of bone

Objective of this investigation was to study the tensile-impact strength and elastic properties of compact bone and to correlate these with the microstructure and fracture-surface topography of the tested specimens

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

An instrumented pendulum-type impact tester was used to obtain tensile-impact properties for compact bone. Load-time histories throughout impact were recorded. Impact tests on 50 longitudinally oriented fresh-beef-bone samples yielded a proportional limit of 9.6±4.1 ksi (66.2±28.2 MPa), an ultimate stress of 17.6±5.3 ksi (121.3±36.5 MPa) and an energy-absorption capacity of 142±85 in. Ib/in.2 (24900±14900 J/m2). A static tensile strength of 14.7±2.8 ksi (101±19 MPa) was obtained from static testing of 24 additional specimens. The tensile-impact strength was 20 percent higher than the static strength. Statistically significant correlations between elastic properties, impact strength and impact energy were found. Bone microstructure and fracture-surface topography were also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans, F. G., Pedersen, H. E. andLissner, H. R., “The Role of Tensile Stress in the Mechanism of Femoral Fractures,”J. Bone & Joint Surg.,33-A (2),485–501 (1951).

    Google Scholar 

  2. Evans, F. G., Stress and Strain in Bones, Charles C. Thomas, Springfield (1957).

    Google Scholar 

  3. Mather, B. S., “Observations on the Effects of Static and Impact Loading on the Human Femur,”J. Biomechanics,1,331–335 (1968).

    Google Scholar 

  4. Sammarco, G. J., Burstein, A. H., Davis, W. L. andFrankel, V. H., “The Biomechanics of Torsional Fractures: The Effect of Loading on Ultimate Properties,”J. Biomechanics,4,113–117 (1971).

    Google Scholar 

  5. Panjabi, M. M., White, A. A. andSouthwick, W. O., “Mechanical Properties of Bone as a Function of Rate of Deformation,”J. Bone Joint Surg.,55-A,322–330 (1973).

    Google Scholar 

  6. Currey, J. D., “The Mechanical Properties of Bone,”Clin. Orthop.,73,210–231 (1970).

    Google Scholar 

  7. Bird, F., Becker, H., Healer, J. and Messer, M., “Experimental Determination of the Mechanical Properties of Bone,” Aerospace Med., 44–48 (Jan. 1968).

  8. McElvaney, J. H. and Byars, E. F., “Dynamic Response of Biological Materials,” ASME Paper 65-Wa/HUP-9 (1965).

  9. Hert, J., Kuchera, P., Vavra, M. andVolenik, V., “Comparison of the Mechanical Properties of Both the Primary and Haversian Bone Tissue,”Acta. Anat.,61,412–423 (1965).

    Google Scholar 

  10. Bonfield, W. andLi, C. H., “Deformation and Fracture of Bone,”J. Appl. Phys.,37,869–875 (1966).

    Article  Google Scholar 

  11. Piekarski, K., “Fracture of Bone,”J. App. Physics,41(1),215–223 (1970).

    Google Scholar 

  12. Bourne, G. H., “The Biochemistry and Physiology of Bone,”Academic Press, New York (1972).

    Google Scholar 

  13. Burstein, A. H., Currey, J. D., Frankel, V. H. andReilly, D. T., “The Ultimate Properties of Bone Tissue: The Effects of Yielding,”J. Biomechanics,5,35–44 (1972).

    Google Scholar 

  14. Hatt, W. K., “Tensile Impact Tests of Metals,”Proc. ASTM,4,282–315 (1904).

    Google Scholar 

  15. Mann, H. C., “The Relation Between the Tension Static and Dynamic Tests,”Proc. ASTM,35(2),323–340 (1935).

    Google Scholar 

  16. Mann, H. C., “High-Velocity Tensile Impact Tests,”Proc. ASTM,36(2),85–109 (1936).

    Google Scholar 

  17. Hoppmann, W. H., “The Velocity Aspect of Tension-Impact Testing,”Proc. ASTM,47,533–544 (1947).

    Google Scholar 

  18. Clark, D. S. andWood, D. S., “The Influence of Specimen Dimension and Shape on the Results in Tension Impact Testing,”Proc. ASTM,50,577–586 (1950).

    Google Scholar 

  19. Clark, D. S. andDutez, P. E., “The Influence of Strain Rate on Some Tensile Properties of Steel,”ibid. 560–575 (.

    Google Scholar 

  20. Clark, D. S., “The Behavior of Metals Under Dynamic Loading,”Trans. ASM,46,67–73 (1953).

    Google Scholar 

  21. Austin, A. L. andSteiden, R. F., “A Method for Determining the Tensile Properties of Metals at High Rates of Strain,”Proc. SESA,XVII(1),99–114 (1959).

    Google Scholar 

  22. Smith, J. E., “Tension Tests of Metals at Strain Rates up to 200/sec,”Mat. Res. Stand.,3(9),713–718 (1963).

    Google Scholar 

  23. Harding, R. S., “Tensile Testing of Materials at Impact Rates of Strain,”J. Mech. Eng. Sci.,2,88–102 (1960).

    Google Scholar 

  24. Kelly, P. F. and Dunn, T. J., “Instrumented Tensile Impact Testing of Thermoplastics,” Mat. Res. Stand., 545–549 (July 1963).

  25. Smith, J. C., Fenstermaker, C. A. and Shouse, P. J., “Behavior of Filamentous Materials Subjected to High-Speed Tensile Impact,” ASTM STP 336, ASTM, 47–69 (1962).

  26. Ely, R. E., “Review of a High Speed Tensile Testing Program for Thermoplastics,”High Speed Testing, 1,Interscience Publishers, New York, 3–25 (1960).

    Google Scholar 

  27. Strella, S., “High-Rate Tension Testing of Plastics,”ibid..27–40.

    Google Scholar 

  28. Meltzer, T. H., andSupnik, R. H., “High Speed Tensile Testing as an Index of the Oxidative Degradation of Polyethylene Resins,”4,ibid.,89–100 (1964).

    Google Scholar 

  29. Donnelly, P. I. andRalston, R. H., “Comparison of Impact Properties of Six Materials on Four Types of Tensile Machines,”5 ibid., 71–83 (1965).

    Google Scholar 

  30. Bluhm, J. I., “The Influence of Pendulum Flexibilities on Impact Energy Measurements,”ASTM STP 176, ASTM, 84–93 (1955).

    Google Scholar 

  31. ASTM, “Plastic—General Methods of Testing, Nomenclature Part 27,” ASTM, 585–592 (1967).

  32. Sedlin, E. D. andHirsch, C., “Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone,”Acta. Orthop. Scand. 37,29–48 (1966).

    Google Scholar 

  33. Saha, S. andHayes, W. C., “Tensile Impact Properties of Bone,”1973 Biomechanics Symp., AMD-2,ASME,89–91 (1973).

    Google Scholar 

  34. Saha, S., “Tensile Impact Properties of Bone and Their Relation to Microstructure,” PhD Thesis, Stanford Univ. (1973).

  35. McElhaney, J., Fogle, J., Byars, E., andWeaver, G., “Effect of Embalming on the Mechanical Properties of Beef Bone,”J. Appl. Physiol.,19,1234–1236 (1964).

    Google Scholar 

  36. Evans, F. G. andLebow, M., “Regional Differences in Some of the Physical Properties of the Human Femur,”J. Appl. Physiol.,3,563–572 (1951).

    Google Scholar 

  37. Mather, B. S., “Correlations Between Strength and Other Properties of Long Bones,”J. Trauma,7(5),633–638 (1967).

    Google Scholar 

  38. Currey, J. D., “Differences in the Tensile Strength of Bone of Different Histological Type,”J. Anat. 93,London 87–95 (1959).

    Google Scholar 

  39. Kraus, H., “On the Mechanical Properties and Behavior of Human Compact Bone,”Advances in Biomedical Engineering and Medical Physics,”2,Interscience Publishers,New York,169–204 (1968).

    Google Scholar 

  40. Pope, M. H. andOutwater, J. O., “The Fracture Characteristics of Bone Substance, J. Biomechanics,5,457 (1972).

    Google Scholar 

  41. Hermann, G. andLiebowitz, H., “Mechanics of Bone Fracture,”Fracture,7,Academic Press, Inc.,New York,771–840 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, S., Hayes, W.C. Instrumented tensile-impact tests of bone. Experimental Mechanics 14, 473–478 (1974). https://doi.org/10.1007/BF02323147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02323147

Keywords

Navigation