Experimental Mechanics

, Volume 41, Issue 3, pp 248–253 | Cite as

Torsion measurement using fiber Bragg grating sensors

  • X. G. Tian
  • X. M. Tao
Article

Abstract

In this paper, the authors study the potential of using fiber Bragg grating (FBG) strain sensors to measure the torsion deformation theoretically and experimentally. FBG sensors are bonded on the surface of a shaft. When the shaft is under torsion, there is strain induced in the FBG sensor and the Bragg wavelength will shift accordingly. According to the wavelength shift and photoelastic properties of the FBG sensor bonded to the shaft, the torsion deformation of the shaft can be obtained. To minimize the measurement error, the optimal direction of the FBG sensor is obtained. The influences of the orientation deviation of the FBG sensor are discussed. The feasibility of this method is demonstrated by experiment, and the test results agree well with the theoretical analysis.

Key Words

Optical fiber fiber Bragg grating torsion strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hill, K., Fujii, Y., Johnson, D.C., andKawasaki, B.S., “Photosensitivity in Optical Fiber Wave Guide Applications to Reflection Filter Fabrication,”Appl. Phys. Lett.,32,647–649 (1978).CrossRefGoogle Scholar
  2. 2.
    Meltz, G., Morey, W.W., andGlenn, W.H., “Forming of Bragg Grating in Optical Fibers by a Transverse Holographic Method,”Opt. Lett.,14,823–825 (1989).Google Scholar
  3. 3.
    Udd, E., ed., Fiber Optical Smart Structures, John Wiley & Sons, New York (1995).Google Scholar
  4. 4.
    Askins, C.G., Putnam, M.A., Williams, G.M., andFriebele, E.J., “Stepped-wavelength Optical-fiber Bragg Grating Arrays Fabricated in Line on a Draw Tower,”Opt. Lett.,14,147–149 (1994).Google Scholar
  5. 5.
    Archambault, J.L., Reekie, L., andRussell, P.S.J., “High Reflectivity and Narrow Bandwidth Fiber Grating Written by Single Excimer Pulse,”Electron. Lett.,29,28–29 (1993).Google Scholar
  6. 6.
    Kersey, D., “Interrogation and Multiplexing Techniques for Fiber Bragg Grating Strain-sensors,”Proceedings of the SPIE,2071,30–48 (1993).Google Scholar
  7. 7.
    Rao, Y.J., “In Fiber Bragg Grating Sensors,”Meas. Sci. Tech.,8,355–375 (1997).Google Scholar
  8. 8.
    Ferdinand, P., Ferragu, O., Lechien, J.L., Lescop, B., Magne, S., Marty, V., Rougeault, S., Kotrotsios, G., Neuman, V., Depeursinge, Y., Michel, J.B., Van Uffelen, M., Varelas, D., Berthou, H., Pierre, G., Christine, R., Bertrand, J., Yves, V., Stevens, W., Voet, M.R.H., andDuarte, T., “Mine Operating Accurate Stability Control with Optical Fiber Sensing and Bragg Grating Technology: The European Brite/Euram Stabilos Project,”J. Lightwave Tech.,13,1303–1312 (1995).CrossRefGoogle Scholar
  9. 9.
    Rao, Y.J., Jackson, D.A., Zhang, L., andBennion, I., “In-fiber Bragg Grating Temperature Sensor System for Medical Applications,”J. Lightwave Tech.,15,779–785 (1997).Google Scholar
  10. 10.
    Proshaka, J.D., “Fiber Optic Bragg Grating Strain Sensor in Largescale Concrete Structures,”Proceedings of the SPIE Fiber Optic Smart Structures and Skins,1798,286–298 (1992).Google Scholar
  11. 11.
    Davis, M.A., Bellmore, D.G., Kersey, D.A., Putanm, M.A., Friebele, E.J., Idriss, R.L., andCodinduma, M.R., “High Sensor-count Bragg Grating Instrumentation System for Large Scale Structural Monitoring Applications,”Proceedings of the SPIE,2718,303–309 (1996).Google Scholar
  12. 12.
    Jones, R.T., Bellemore, D.G., Berkoff, T.A., andSirkis, J.S., “Determination of Cantilever Plate Shapes Using Wavelength Division Multiplexed Fiber Bragg Grating Sensors and a Least-squares Strain Fitting Algorithm,”J. Smart Mat. Struct.,7,248–256 (1998).Google Scholar
  13. 13.
    Davis, M.A., Bellmore, D.G., Putanm, M.A., andKersey, D.A., “Interrogation of 60 Fiber Bragg Grating Sensors for Microstrain Resolution Capability,”Electron. Lett.,32,1913–1394 (1996).CrossRefGoogle Scholar
  14. 14.
    Friebele, E.J., Askins, C.G., Putnam, M.A., Fosha, A.A., Jr., “Distributed Strain Sensing with Fiber Bragg Grating Array Embedded in CRTMTM Composites,”Electron. Lett.,30,1783–1784 (1994).CrossRefGoogle Scholar
  15. 15.
    Volanthen, M., Geiger, H., andDakin, J.P., “Distributed Grating Sensors Using Low-coherence Reflectometry,”J. Lightwave Tech.,15,2076–2082 (1997).CrossRefGoogle Scholar
  16. 16.
    Huang, S., Ohn, M.M., LeBlanc, M., andMeasures, R.M., “Continuous Arbitrary Strain Profile Measurements with Fiber Bragg Gratings,”J. Smart Mat. Struct.,7,248–256 (1998).Google Scholar
  17. 17.
    Ohn, M.M., Huang, S.Y., LeBlanc, M., andMeasures, R.M., “Distributed Strain Sensing Using Long Intracore Fiber Bragg Gratings,”Procceedings of the SPIE,2838,66–75 (1996).Google Scholar
  18. 18.
    Blake, A., ed., Handbook of Mechanics, Materials, and Structures, John Wiley & Sons, New York (1985).Google Scholar
  19. 19.
    Hill, K., “Bragg-gratings Fabricated in Monomode Photosensitivity Optical Fiber by UV Exposure Through a Phase-mask,”Appl. Phys. Lett.,62,1035–1037 (1993).CrossRefGoogle Scholar
  20. 20.
    Tao, X.M., Tang, L.Q., Du, W.C., andChoy, C.L., “Internal Strain Measurement by Fiber Bragg Grating Sensors in Textile Composites,”J. Composite Sci. Tech.,60,657–669 (2000).Google Scholar
  21. 21.
    Chen, D., Yang, D.X., Tao, X.M., andTam, H.Y., “Effects of Pure Bending on the Sensing Characteristics of Fiber Bragg Gratings,”Proceeding of the SPIE,4077,92–96 (2000).Google Scholar
  22. 22.
    Wei, T., Yuee, H.H., Hasz, C.H., and Key, P.L., “Degradation of Fiber Strength During Coating Stripping,” Int. Wire & Cable Symp. Proc., 99–204 (1989).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 2001

Authors and Affiliations

  • X. G. Tian
    • 1
  • X. M. Tao
    • 2
  1. 1.Xian Jiaotong UniversityChina
  2. 2.Institute of Textiles and ClothingHong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations