Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate

Abstract

The authors undertook this study to determine the effects of age, gender, and heart rate (HR) on the results of cardiac autonomic function tests for measuring heart rate variability (HRV) in a large sample of healthy subjects (n=309). Conventional tests (deep breathing, maximum/minimum 30∶15 ratio), and a standardized 5-minute resting study, including spectral analysis of HR, were used. The main findings included (1) the indices of all tests, except for the ratio of the low- (LF) to high-frequency (HF) spectral power (LF/HF ratio) and HR itself, are inversely related to age in both sexes; (2) the 5-minute spectral bands (except for the LF/HF ratio), the variation coefficient, expiratory-inspiratory ratio during deep breathing, and the maximum/minimum 30∶15 ratio are independent of HR; (3) women up to the age of 55 years have a higher resting HR compared with men; (4) young and middleaged women show a significantly lower LF power and LF/HF ratio compared with age-matched men, whereas no significant gender differences are observed in the absolute HF power. The authors computed age- and gender-dependent normal values for each of the HRV indices studied here and discuss the clinical consequences arising from gender differences in HRV.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.Circulation 1996; 93:1043–1065.

    Google Scholar 

  2. 2.

    Girard A, Hugues FC, Le Jeunne C, et al. Short-term variability of blood pressure and heart rate in hyperthyroidism.Clin Auton Res 1998; 8:181–186.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Rutter MK, McComb JM, Brady S, et al. Autonomic neuropathy in asymptomatic subjects with non-insulin dependent diabetes mellitus and micro-albuminuria.Clin Auton Res 1998; 8:251–257.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Knorpelainen, JT, Sotaniemi KA, Myllyla VV. Autonomic nervous system disorders in stroke.Clin Auton Res 1999; 9:325–333.

    Google Scholar 

  5. 5.

    Bunten WC, Warner AL, Brunnemann SR, et al. Heart rate variability is altered following spinal cord injury.Clin Auton Res 1998; 8:329–334.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Yataco A, Talo H, Rowe P, et al. Comparison of heart rate variability in patients with chronic fatigue syndrome and controls.Clin Auton Res 1997; 6:293–297.

    Google Scholar 

  7. 7.

    Rechlin T, Orbes I, Weis M, et al. Autonomic cardiac abnormalities in alcohol dependent patients admitted to a psychiatric department.Clin Autonomic Res 1996; 6:119–122.

    CAS  Google Scholar 

  8. 8.

    Agelink MW, Majewski T, Wurthmann C, et al. Autonomic neurocardiac function in patients with major depression and effects of antidepressive treatment with nefazodone.J Affect Disord 2000; 62:187–198.

    Google Scholar 

  9. 9.

    Kleiger RE, Miller JP, Bigger JT, et al. Multicenter Post-Infarction Research Group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction.Am J Cardiol 1987; 59:256–262.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Ewing DJ. Heart rate variability: an important new risk factor in patients following myocardial infarction.Clin Cardiol 1991; 14:683–685.

    CAS  PubMed  Google Scholar 

  11. 11.

    Casolo GC, Stroder P, Signorini C, et al. Heart rate variability during the acute phase of myocardial infarction.Circulation 1992; 85:2073–2079.

    CAS  PubMed  Google Scholar 

  12. 12.

    Bigger JT, Fleiss JL, Rolnitzky LM, et al. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction.Circulation 1993; 88:927–934.

    CAS  PubMed  Google Scholar 

  13. 13.

    Cripps TR, Malik M, Farrell TG, et al. Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method.Br Heart J 1991; 69:14–19.

    Google Scholar 

  14. 14.

    Odemuyiwa O, Malik M, Farrel T, et al. Comparison of heart rate variability index and left ventricular ejection fraction for all cause mortality, arrhythmic events, and sudden death after acute myocardial infarction.Am J Cardiol 1991; 68:434–439.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    La Rovere MT, Bigger JT, Marcus FI, et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators.Lancet 1988; 351:478–484.

    Google Scholar 

  16. 16.

    Johnson RH, Robinson BJ. Mortality in alcoholics with autonomic neuro-pathy.J Neurol Neurosurg Psychiatry 1988; 51:476–480.

    CAS  PubMed  Google Scholar 

  17. 17.

    Ewing DJ, Campbell IW, Clarke BF. Assessments of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications.Ann Internal Med 1980; 92:308–311.

    CAS  Google Scholar 

  18. 18.

    O'Brien, IA, McFadden JP, Corall JM. The influence of autonomic neuropathy on mortality in insulin-dependent diabetes.Q J Med 1991; 290:495–502.

    Google Scholar 

  19. 19.

    Szabo BM, van Veldhuisen DJ, van der Veer N, et al. Prognostic value of heart rate variability in chronic congestive heart failure secondary to idiopathic or ischemic dilated cardiomyopathy.Am J Cardiol 1997; 79:978–980.

    CAS  PubMed  Google Scholar 

  20. 20.

    Berntson GG, Bigger JT, Eckberg DL, et al. Heart rate variability: origins, methods, and interpretative caveats.Psychophysiology 1997; 34:623–648.

    CAS  PubMed  Google Scholar 

  21. 21.

    Low PA. The effect of aging on the autonomic nervous system. In:Clinical Autonomic Disorders. Low PA, ed. Boston: Little, Brown and Company; 1993. pp. 685–700.

    Google Scholar 

  22. 22.

    Ziegler D, Laux G, Dannehl K, et al. Assessment of cardiovascular autonomic function: age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses.Diabet Med 1992; 9:166–175.

    CAS  PubMed  Google Scholar 

  23. 23.

    Cowan MJ, Pike K, Burr RL. Effects of gender and age on heart rate variability in healthy individuals and in persons after sudden cardiac arrest.J Electrocardiol 1994; 27 (suppl):1–9.

    PubMed  Google Scholar 

  24. 24.

    Ramaekers D, Ector H, Aubert AE, et al. Heart rate variability and heart rate in healthy volunteers. Is the female autonomic nervous system cardioprotective?Eur Heart J 1998; 19:1334–1341.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Umetani K, Singer DH, McCraty R, et al. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades.J Am Coll Cardiol 1998; 31:593–601.

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Piha SJ. Cardiovascular responses to various autonomic tests in males and females.Clin Auton Res 1993; 3:15–20.

    CAS  PubMed  Google Scholar 

  27. 27.

    Piha SJ. Clinical significance of the resting heart rate in the assessment of autonomic function by cardiovascular reflex tests.Clin Auton Res 1995; 5:61–63.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Braune S, Auer A, Schulte-Mönting J, et al. Cardiovascular parameters: sensitivity to detect autonomic dysfunction and influence of age and sex in normal subjects.Clin Auton Res 1996; 6:3–15.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Liao D, Barnes RW, Chambless LE, et al. Age, race and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study. Atherosclerosis Risk in Communities.Am J Cardiol 1995; 76:906–912.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Ryan SM, Goldberger AL, Pincus SM, et al. Gender- and agerelated differences in heart rate dynamics: are women more complex than men?J Am Coll Cardiol 1994; 24:1700–1707.

    CAS  PubMed  Google Scholar 

  31. 31.

    Huikuri HV, Pikkujamsa SM, Airaksinen KE, et al. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects.Circulation 1996; 94:122–125.

    CAS  PubMed  Google Scholar 

  32. 32.

    Sinnreich R, Kark JD, Friedlander Y, et al. Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics.Heart 1998; 80:156–162.

    CAS  PubMed  Google Scholar 

  33. 33.

    Yamasaki Y, Kodama M, Matsuhisa M, et al. Diurnal heart rate variability in healthy subjects: effects of aging and sex difference.Am J Physiol 1996; 271:H303-H310.

    CAS  PubMed  Google Scholar 

  34. 34.

    Molgaard J, Hermansen K, Bjerregaard P. Spectral components of short-term R-R interval variability in healthy subjects and effects of risk factors.Eur Heart J 1994; 15:1174–1183.

    CAS  PubMed  Google Scholar 

  35. 35.

    Jensen-Urstad K, Storck N, Bouvier F, et al. Heart rate variability in healthy subjects is related to age and gender.Acta Physiol Scand 1997; 160:235–241.

    CAS  PubMed  Google Scholar 

  36. 36.

    Van Hoogenhuyze D, Weinstein N, Martin GJ, et al. Reproducibility and relationship to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease.Am J Cardiol 1991; 68:1668–1676.

    PubMed  Google Scholar 

  37. 37.

    Bigger JT, Fleiss JL, Steinman RC, et al. RR variability in healthy, middle-aged persons compared with chronic coronary heart disease or recent acute myocardial infarction.Circulation 1995; 91:1936–1943.

    PubMed  Google Scholar 

  38. 38.

    Ingall TJ, McLeod JG, O'Brien PC. The effect of aging on autonomic nervous system function.Aust N Z J Med 1990; 20:570–577.

    CAS  PubMed  Google Scholar 

  39. 39.

    Gowan JM, Pike K, Burr RL. Effects of gender and age on heart rate variability in healthy individuals and in persons after sudden cardiac arrest.J Electrocardiol 1995; 27 (suppl):1–9.

    Google Scholar 

  40. 40.

    Consensus statement. Report and recommendations of the San Antonio Conference on diabetic neuropathy.Diabetes 1988; 37:1000–1004.

    Google Scholar 

  41. 41.

    Berger RD, Akselrod S, Gordon D, et al. An efficient algorithm for spectral analysis of heart rate variability.IEEE Trans Biomed Eng 1986; 33:900–904.

    CAS  PubMed  Google Scholar 

  42. 42.

    Saul JP, Rea RF, Eckberg DL, et al. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity.Am J Physiol 1990; 258:713–721.

    Google Scholar 

  43. 43.

    Akselrod S, Gordon D, Ubel FA, et al. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control.Science 1981; 213:220–222.

    CAS  PubMed  Google Scholar 

  44. 44.

    Pagani M, Lombardi F, Guzzetti S, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog.Circ Res 1986; 59:178–193.

    CAS  PubMed  Google Scholar 

  45. 45.

    Pomeranz B, Macauley RJB, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis.Am J Physiol 1985; 248:H151-H153.

    CAS  PubMed  Google Scholar 

  46. 46.

    Agelink MW, Malessa R, Weisser U, et al. Alcoholism, peripheral neuropathy and cardiovascular autonomic neuropathy (CAN).J Neurol Sci 1998; 161:135–142.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Weinberg CR, Pfeiffer MA. An improved method of measuring heart rate variability: assessment of cardiac autonomic function.Biometrics 1984; 40:855–861.

    CAS  PubMed  Google Scholar 

  48. 48.

    Yeragani VK, Pohl R, Berger R, et al. Relationships between age and heart rate variability in supine and standing postures: a study of spectral analysis of heart rate.Pediatr Cardiol 1994; 15:14–20.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Schwartz JB, Gibb WL, Tran T. Aging effects on heart rate variation.Gerontol 1991; 46:M99-M106.

    CAS  Google Scholar 

  50. 50.

    Fukusaki C, Kawakubo K, Yamamoto Y. Assessment of the primary effect of aging on heart rate variability in humans.Clin Autonom Res 2000; 10:123–130.

    CAS  Google Scholar 

  51. 51.

    Stein PK, Kleiger RE, Rottman JN. Differing effects on heart rate variability in men and women.Am J Cardiol 1997; 80:302–305.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Low PA, Opfer-Gehrking TL, Proper CJ, et al. The effect of aging on cardiac autonomic and postganglionic sudomotor function.Muscle Nerve 1990; 13:152–157.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Smith SE, Smith SA. Heart rate variability in healthy subjects measured with a bedside computer-based technique.Clin Sci (Colch) 1981; 61:379–383.

    CAS  Google Scholar 

  54. 54.

    O'Brien IAD, O'Hare P, Corrall RJM. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function.Br Heart J 1986; 55:348–354.

    PubMed  Google Scholar 

  55. 55.

    Ewing DJ, Martin CN, Young RJ, et al. The value of cardiovascular autonomic function tests: 10 years' experience in diabetes.Diabetes Care 1985; 8:491–498.

    CAS  PubMed  Google Scholar 

  56. 56.

    Hellman JB, Stacy RW. Variation of respiratory sinus arrhythmia with age.J Appl Physiol 1976; 41:734–738.

    CAS  PubMed  Google Scholar 

  57. 57.

    Pagani M, Malfatto G, Pierini S, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy.J Auton Nerv Syst 1988; 23:143–153.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Weise F, Heydenreich F. Age-related changes of heart rate power spectra in a diabetic man during orthostasis.Diabetes Res Clin Pract 1991; 11:23–32.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Lanting P, Faes THJC, Heimans JJ, et al. Spectral analysis of spontaneous heart rate variation in diabetic patients.Diabetic Med 1990; 7:705–710.

    CAS  PubMed  Google Scholar 

  60. 60.

    Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age.Nature 1976; 261:333–335.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Sundlof G, Wallin BG. Human muscle nerve sympathetic activity at rest: relationship to blood pressure and age.J Physiol 1978; 274:621–637.

    CAS  PubMed  Google Scholar 

  62. 62.

    Pfeiffer MA, Weinberg CR, Cook D, et al. Differential changes of autonomic nervous system function with age in man.Am J Med 1983; 75:249–258.

    Google Scholar 

  63. 63.

    Sega S, Jager F, Kiauta T. A comparison of cardiovascular reflex tests and spectral analysis of heart rate variability in healthy subjects.Clin Auton Res 1993; 3:175–182.

    CAS  PubMed  Google Scholar 

  64. 64.

    Dawson-Saunders B, Trapp RG. Interpreting correlation coefficients. In:Basic and Clinical Biostatistics. London: Prentice-Hall International; 1990. pp. 54–56.

    Google Scholar 

  65. 65.

    Eckberg DL. Sympathovagal balance: a critical appraisal.Circulation 1997; 96:3224–3232.

    CAS  PubMed  Google Scholar 

  66. 66.

    Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post myocardial infarction risk stratification.Circulation 1992; 85(suppl. 1):177–191.

    Google Scholar 

  67. 67.

    Lown B, Verrier RL. Neural activity and ventricular fibrillation.N Engl J Med 1976; 294:1165–1170.

    CAS  PubMed  Google Scholar 

  68. 68.

    Ben-David J, Zipes DP. Autonomic neural modulation of cardiac rhythm. Basic concepts.Mod Concepts Cardiovasc Dis 1988; 57(pt 1):41–46.

    Google Scholar 

  69. 69.

    Tsuji H, Venditti FJ Jr, Manders ES, et al. Reduced heart rate variability and mortality risk in an elderly cohort: the Framingham Heart Study.Circulation 1994; 90:878–883.

    CAS  PubMed  Google Scholar 

  70. 70.

    Huikuri HV, Koistinen MJ, Yli-Mäyry S, et al. Impaired low-frequency oscillations of heart rate in patients with prior acute myocardial infarction and life threatening arrhythmias.Am J Cardiol 1995; 76:56–60.

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Bigger TJ, Fleiss JL, Rolnitzki LM, et al. Frequency domain measures of heart period variability to assess risk late after myocardial infarction.J Am Coll Cardiol 1993; 21:729–736.

    PubMed  Google Scholar 

  72. 72.

    De Meersman RE, Zion AS, Lieberman JS, et al. Acetylsalicylic acid and autonomic modulation.Clin Auton Res 2000; 10:197–201.

    Article  PubMed  Google Scholar 

  73. 73.

    Kupari M, Virolainen J, Koskinen P, et al. Short term heart rate variability and factors modifying the risk of coronary artery disease in a population sample.Am J Cardiol 1993; 72:897–903.

    CAS  PubMed  Google Scholar 

  74. 74.

    Jensen-Urstad M, Jensen-Urstad K, Ericson M, et al. Heart rate variability is related to leukocyte count in men and to blood lipoproteins in women in a healthy population of 35-year old subjects.J Intern Med 1998; 243:33–40.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus W. Agelink M.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Agelink, M.W., Malessa, R., Baumann, B. et al. Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clinical Autonomic Research 11, 99–108 (2001). https://doi.org/10.1007/BF02322053

Download citation

Key words

  • autonomic nervous system
  • human
  • cardiovascular regulation
  • heart rate variability
  • 30∶15 ratio
  • deep breathing test