Experimental Mechanics

, Volume 10, Issue 12, pp 497–505 | Cite as

A simple holographic interferometer for static and dynamic photomechanics

Isochromatics and isopachics are presented as illustrations of the applications of the method to the solution of static-stress problems, and are used in the solution of some not yet solved dynamic-stress problems
  • J. A. Clark
  • A. J. Durelli


A particular variation of holographic imaging system is described which, when used as a multiple-exposure holographic interferometer, possesses advantages for applications in static and dynamic photomechanics. Large fields of view can be obtained. Rigid-body motions produced by loading are automatically eliminated. The holograms can be recorded on medium-resolution films which have high sensitivity. Specimens manufactured with readily available materials can be used for the determination of isochromatics and isopachics.

An attempt is made to describe this contribution in the background of previous developments in interferometry. Operation of the system is interpreted by showing the equivalence of the holographic interferometer to a combination of two systems presently in use in experimental stress analysis: a Fizeau interferometer and an optical spatial filter. The interpretation of isochromatics and isopachis as moiré phenomena is emphasized.

Isochromatics and isopachics are presented as illustrations of the applications of the method to the solution of static-stress problems, and they are used in the solution of some not yet solved dynamic-stress problems. Whole-field static isochromatics obtained as absolute-retardation interference are shown. Also shown are whole-field dynamic isopachics.


Interference Pattern Fringe Pattern Holographic Interferometry Isochromatic Fringe Wedge Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Favre, H., “Sur une Nouvelle Méthode Optique de Determination des Tensions Interieures”,Rev. Opt. Theor. Instrum.,8,193–213,241–261, 289–307 (1929).Google Scholar
  2. 2.
    Fabry, C., “Sur une Nouvelle Méthode pour l'Étude Expérimentale des Tensions Élastiques”,Compt. Rend.,190,457–460 (1930).MATHGoogle Scholar
  3. 3.
    Tesar, V., “Méthode Purement Optique pour Déterminer les Déformations d'Epaisseur des Modéles”,Rev. Opt. Theor. Instrum.,2,97 (1932).Google Scholar
  4. 4.
    Frocht, M. M., “On the Optical Determination of Isopachic Stress Patterns,” Proc. 5th Intl. Cong. Appl. Mech., 221 (1939).Google Scholar
  5. 5.
    Sinclair, D., “Interferometer Method of Plane Stress Analysis”,Jnl. Opt. Soc. Amer.,30 (11),511–513 (1940).CrossRefGoogle Scholar
  6. 6.
    Post, D., “Photoelastic Stress Analysis for an Edge Crack in a Tensile Field”,Proc. SESA, XI (1),99–116 (1954).Google Scholar
  7. 7.
    Post, D., “A New Photoelastic Interferometer Suitable for Static and Dynamic Measurements”,Proc. SESA, XI (1),191–202 (1954).Google Scholar
  8. 8.
    Post, D., “Photoelastic Evaluation of Individual Principal Stresses by Large Field Absolute Retardation Measurements”,Proc. SESA, XIII 13 (2),119–132 (1956).Google Scholar
  9. 9.
    Post, D., “The Dynamic Stress Distribution Surrounding a Running Crack—a Photoelastic Analysis”,Proc. SESA, XV (1),69–92 (1958).Google Scholar
  10. 10.
    Mesmer, G., “The Interference Screen Method for Isopachic Patterns (Moiré Method)”,Proc. SESA, XIII (2),21–26 (1956).Google Scholar
  11. 11.
    Pirard, A., “Considerations sur la Methode du Moiré en Photoelasticite”,Rev. Universelle Mines, Met., Mec.16 (4),177–200 (1960).Google Scholar
  12. 12.
    Dose, A., “Beitrag zur Methodik der Ebenen Spannungsoptik”,Z. Flugswiss.,8 (10/11),294–307 (1960).MATHGoogle Scholar
  13. 13.
    Dose, A., andLandwehr, R., “Zur Bestimmung der Isopachen in der Spannungsoptik”,Naturwissenschaften,36,342 (1949).CrossRefGoogle Scholar
  14. 14.
    Nisida, M., andSaito, H., “A New Interferometric Method of Two-dimensional Stress Analysis”,Experimental Mechanics,4 (12),360–376 (1964).CrossRefGoogle Scholar
  15. 15.
    Gabor, D., “A New Microscopic Principle”,Nature,161,777–778 (1948).CrossRefGoogle Scholar
  16. 16.
    Gabor, D., “Microscopy by Reconstructed Wave-Fronts”,Proc. Roy. Soc. (London),197,454–487 (1949).MATHCrossRefGoogle Scholar
  17. 17.
    Powell, R. L., andStetson, K. A., “Interferometric Vibration Analysis by Wavefront Reconstruction”,Jnl. Opt. Soc. Amer.,55,1593–1598 (1965).CrossRefGoogle Scholar
  18. 18.
    Chau, H. H. M., andHorman, M. H., “Demonstration of the Application of Wavefront Reconstruction to Interferometry”,Appl. Opt.,5,1237 (1966).CrossRefGoogle Scholar
  19. 19.
    Heflinger, L., Wuerker, R., andBrooks, R., “Holographic Interferometry”,Jnl. Appl. Phys.,37,642–649 (1966).CrossRefGoogle Scholar
  20. 20.
    Brooks, R., Heflinger, L., andWuerker, R., “Interferometry with a Holographically Reconstructed Comparison Beam”,Appl. Phys. Lett.,7,248 (1965).CrossRefGoogle Scholar
  21. 21.
    Fourney, M. E., “Application of Holography to Photoelasticity”,Experimental Mechanics,8 (1),33–38 (1968).CrossRefGoogle Scholar
  22. 22.
    Hovanesian, J. D., Brcic, V., andPowell, R. L., “A New Experimental Stress-Optic Method: Stress-Holo-Inteferometry”,Experimental Mechanics,8 (8),362–368 (1968).CrossRefGoogle Scholar
  23. 23.
    Fourney, M. E., and Mate, K. V., “Further Application of Holography to Photoelasticity,” presented at 1969 SESA Spring Meeting, Philadelphia, Pa. Google Scholar
  24. 24.
    Wetzels, W., “Holographie als Hilfsmittel zur Isopachenbestimmung”,Optik, Band 27, 271–273 (1968).Google Scholar
  25. 25.
    Powell, R. L., Hovanesian, J. D., and Brcic, V., “Holographic Interferometry with Birefringent Objects,” Proc. Symp. on the Eng. Uses of Holography, University of Strathclyde, Glasgow (1968).Google Scholar
  26. 26.
    Leith, E. N., andUpatnieks, J., “Wavefront Reconstruction with Continuous-Tone Objects”,Jnl. Opt. Soc. Amer.,53,1377–1381 (1963).CrossRefGoogle Scholar
  27. 27.
    Brooks, R. E., “Low-Angle Holographic Interferometry Using Tri-X Pan Film”,Appl. Opt.,6,1418–1419 (1967).CrossRefGoogle Scholar
  28. 28.
    DeVelis, J. B., and Reynolds, G. O., Theory and Applications of Holography, Addison-Wesley (1967).Google Scholar
  29. 29.
    Bryngdahl, O., andLohmann, A. W., “Interferograms Are Image Holograms”,Jnl. Opt. Soc. Amer.,58,141–142 (1968).CrossRefGoogle Scholar
  30. 30.
    Clark, J. A., Durelli, A. J., andParks, V. J., “Photoelastic Study of High Frequency Stress Waves Propagating in Bars and Plates”,Jnl. Appl. Mech.35 (4),747–753 (1968).Google Scholar
  31. 31.
    Clark, J. A., and Durelli, A. J., “Optical Stress Analysis of Flexural Waves in a Bar”, Jnl. Appl. Mech. paper No. 70-APM-Z (preprint March 1970).Google Scholar
  32. 32.
    Post, D., “The Generic Nature of the Absolute Retardation Method of Photoelasticity”,Experimental Mechanics,7 (6),233–241 (1967).CrossRefGoogle Scholar
  33. 33.
    Durelli, A. J., andParks, V. J., “Moiré Fringes as Parametric Curves”,Experimental Mechanics,7 (3),97–104 (1967).CrossRefGoogle Scholar
  34. 34.
    Post, D., “Analysis of Moiré Fringe Multiplication Phenomena,”Appl. Opt.,6,1938–1942 (1967).CrossRefGoogle Scholar
  35. 35.
    Chiang, F., “Techniques of Optical Spatial Filtering Applied to the Processing of Moiré-fringe Patterns”, presented at 1969 SESA Spring Meeting, Philadelphia, Pa. Google Scholar
  36. 36.
    de Haas, H. M., and Loof, H. W., “An Optical Method to Facilitate the Interpretation of Moiré Pictures”, VDI-Berichte Nr. 102, Proc. 3rd Intl. Cong. for Exp. Stress Analysis, Berlin (1966).Google Scholar
  37. 37.
    Beranek, W. J., “Rapid Interpretation of Moiré Photographs”,Experimental Mechanics,8 (6),249–256 (1968).CrossRefGoogle Scholar
  38. 38.
    Guild, J., The Interference System of Crossed Diffraction Gratings, Oxford University Press (1956).Google Scholar
  39. 39.
    Sanford, R. J., and Durelli, A. J., “The Interpretation of Fringes in Stress-Holo-Interferometry”, presented at 1970 SESA Spring Meeting, Hunstville, Ala.Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1970

Authors and Affiliations

  • J. A. Clark
    • 1
  • A. J. Durelli
    • 1
  1. 1.Civil Engineering and Mechanics DepartmentThe Catholic University of AmericaWashington, D. C.

Personalised recommendations