Chromatographia

, Volume 39, Issue 1–2, pp 74–78 | Cite as

Concentration and characterization of dilute colloidal samples by potential-barrier field-flow fractionation

  • A. Koliadima
  • G. Karaiskakis
Originals

Summary

Potential-barrier field-flow fractionation, which is a combination of potential-barrier chromatography and sedimentation field-flow fractionation, is shown to be a convenient and accurate method for the concentration and analysis (separation and characterization) ofdilute colloidal samples. Two sizes (0.158 and 0.271 μm) of haematite (α-Fe2O3) monodisperse colloidal samples diluted in volumes of up to 20 cm3 are used as model colloids. The particle diameters found by the present concentration procedure under various experimental conditions are in good agreement with those determined by conventional sedimentation field-flow fractionation, in which a small concentrated sample volume was injected directly into the column.

Key Words

One-phase chromatography Field-flow fractionation (FFF) Potential-barrier FFF Colloidal materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. Giddings, F. S. Yang, M. N. Myers, Anal. Chem.46, 1917 (1974).CrossRefGoogle Scholar
  2. [2]
    J. J. Kirkland, W. W. Yau, W. A. Doerner, J. W. Grant, Anal. Chem.52, 1944 (1980).CrossRefGoogle Scholar
  3. [3]
    G. Karaiskakis, M. N. Myers, K. D. Caldwell, J. C. Giddings, Anal. Chem.53, 1314 (1981).CrossRefGoogle Scholar
  4. [4]
    J. C. Giddings, G. Karaiskakis, K. D. Caldwell, Sep. Sci. Technol.16 (6), 725 (1981).Google Scholar
  5. [5]
    J. C. Giddings, G. Karaiskakis, K. D. Caldwell, M. N. Myers, J. Colloid Interface Sci.92 (1), 66 (1983).CrossRefGoogle Scholar
  6. [6]
    A. Koliadima, G. Karaiskakis, J. Liq. Chromatogr.11, 2863 (1988).Google Scholar
  7. [7]
    G. Karaiskakis, E. Dalas, J. Chromatogr. Sci.26, 29 (1988).Google Scholar
  8. [8]
    A. Koliadima, E. Dalas, G. Karaiskakis, J. High Resol. Chromatogr.13, 338 (1990).CrossRefGoogle Scholar
  9. [9]
    G. Karaiskakis, A. Koliadima, K. Kleparnik, Colloid Polym. Sci.269, 583 (1991).Google Scholar
  10. [10]
    M. N. Myers, J. C. Giddings, Anal. Chem.54, 2284 (1982).CrossRefGoogle Scholar
  11. [11]
    E. Dalas, G. Karaiskakis, Colloids and Surfaces28, 169 (1987).CrossRefGoogle Scholar
  12. [12]
    E. Dalas, P. Koutsoukos, G. Karaiskakis, Colloid Polym. Sci.268, 155 (1990).CrossRefGoogle Scholar
  13. [13]
    G. Karaiskakis, A. Koliadima, Chromatographia28, 31 (1989).CrossRefGoogle Scholar
  14. [14]
    A. Koliadima, G. Karaiskakis, J. Chromatogr.517, 345 (1990).CrossRefGoogle Scholar
  15. [15]
    E. Ruckenstein, A. Marmur, W. N. Gill, J. Colloid Interface Sci.61, 183 (1977).CrossRefGoogle Scholar
  16. [16]
    J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1987; pp. 144–158.Google Scholar
  17. [17]
    R. Hogg, T. W. Healy, D. W. Fuerstenau, Trans. Faraday Soc.62, 1638 (1966).CrossRefGoogle Scholar
  18. [18]
    R. J. Cuo, E. Matijevic, J. Colloid Interface Sci.78, 407 (1980).Google Scholar
  19. [19]
    P. C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, 1977; pp. 457–467.Google Scholar
  20. [20]
    M. E. Hansen, J. C. Giddings, Anal. Chem.61, 811 (1989).CrossRefGoogle Scholar
  21. [21]
    M. E. Hansen, J. C. Giddings, R. Beckett, J. Colloid Interface Sci.132 (2), 300 (1989).CrossRefGoogle Scholar
  22. [22]
    Y. Mori, B. Scarlett, H. G. Merkus, J. Chromatogr.515, 27 (1990).CrossRefGoogle Scholar
  23. [23]
    Y. Mori, K. Kimura, M. Tanigaki, Anal. Chem.62, 2668 (1990).Google Scholar
  24. [24]
    M. G. Fontana, N. D. Greene, Corrosion Engineering, McGraw-Hill Co., NY, 1978, p. 175.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • A. Koliadima
    • 1
  • G. Karaiskakis
    • 1
  1. 1.Department of ChemistryUniversity of PatrasPatrasGreece

Personalised recommendations