Experimental Mechanics

, Volume 23, Issue 2, pp 190–195 | Cite as

The monomode fiber—A new tool for holographic interferometry

Monomode and multimode fibers with step-index profiles are used as tools to measure surface displacement by holographic interferometry
  • J. A. Gilbert
  • T. D. Dudderar
  • M. E. Schultz
  • A. J. Boehnlein


Monomode fibers are used to minimize modal interactions which ordinarily occur during holographic deformation studies based on multimode fiber-optic access. Test results show that holograms have better diffraction efficiency than those generated using multimode fibers and that stringent requirements for vibration isolation associated with holographic testing can be somewhat relaxed.


Mechanical Engineer Fluid Dynamics Modal Interaction Diffraction Efficiency Stringent Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols


radius of plate


modal amplitude


displacement vector

\(\bar d_i \)

inner diameter of pipe


outer diameter of pipe

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\hat e} _{ i} \)

unit vector in the direction of propagation


modal field


thickness of plate


fringe-order number


index of refraction of cladding


index of refraction of core

r, θ,Z

cylindrical coordinates


Cartesian coordinates


Young's modulus

\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{E} ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{E} _B ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{E} _U \)

propagation modes


length of pipe


coherent multimode fiber bundle


applied torque


numerical aperture


applied load


coherent monomode fiber bundle


tangential component of displacement


dimensionless waveguide parameter


displacement component along the line of sight


propagation constant


core to cladding index difference


critical angle




Poisson's ratio


radius of fiber core


angle of twist


angular velocity

length of fiber


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, S.E. andChynoweth, A.G., editors, Optical Fiber Telecommunications, Academic Press, New York, San Francisco, London (1979).Google Scholar
  2. 2.
    Collin, R.E., Field Theory of Guided Waves, McGraw-Hill, New York (1960).Google Scholar
  3. 3.
    Kapany, N.S. andBurke, J.J., Optical Waveguides, Academic Press, New York (1972).Google Scholar
  4. 4.
    Marcuse, D., Light Transmission Optics, Van Nostrand, New York (1972).Google Scholar
  5. 5.
    Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, New York (1974).Google Scholar
  6. 6.
    Pask, C., Snyder, A.W. andMitchell, D.J., “Number of Modes on Optical Waveguides,”J. Opt. Soc. Amer.,65 (15),356–357 (March1975).Google Scholar
  7. 7.
    Gilbert, J.A. andHerrick, J.W., “Holographic Displacement Analysis with Multimode Fiber Optics,”Experimental Mechanics,21 (8),315–320 (Aug.1981).CrossRefGoogle Scholar
  8. 8.
    Gilbert, J.A., Schultz, M.E. and Boehnlein, A.J., “Remote Displacement Analysis Using Multimode Fiber Optic Bundles,” Proc. SESA Spring Meeting, Dearborn, MI, 41–43 (May 1981).Google Scholar
  9. 9.
    Marcuse, D., “Loss Analysis of Single-Mode Fiber Splices,”Bell Syst. Tech. J.,56 (5),703–718 (May1977).Google Scholar
  10. 10.
    Gloge, D., “Weakly Guiding Fibers,”Appl. Opt.,10 (10),2252–2258 (Oct.1971).Google Scholar
  11. 11.
    Leite, A.M.P.P., “Optical Fibre Illuminators for Holography,”Opt. Comm.,28 (3),303–308 (March1979).MathSciNetGoogle Scholar
  12. 12.
    Peterman, K., “Fundamental Mode Micro Bending Loss in Graded Index and W Fibers,”Opt. Quantum Electron.,9 (2),167–175 (Feb.1977).Google Scholar
  13. 13.
    Gambling, W.A. andMatsumura, H., “Propagation in Radially Inhomogeneous Single-Mode Fibers,”Opt. Quantum Electron.,10 (1),31–40 (Jan.1978).CrossRefGoogle Scholar
  14. 14.
    Marcuse, D., “Gaussain Approximation of the Fundamental Modes of Graded Index Fibers,”J. Opt. Soc. Amer.,68 (1),103–109 (Jan.1978).Google Scholar
  15. 15.
    Sciammarella, C.A. andChawla, S.K., “A Lens Holographic-moiré Technique to Obtain Components of Displacement and Derivatives,”Experimental Mechanics,18 (10),373–381 (Oct.1978).CrossRefGoogle Scholar
  16. 16.
    Gilbert, J.A. andExner, G.A., “Holographic Displacement Analysis Using Image-plane Techniques,”Experimental Mechanics,18 (10),382–388 (Oct.1978).CrossRefGoogle Scholar
  17. 17.
    Suhara, T., Nishihara, H. and Koyama, J., “The Far Field Patterns of the Light Emitted from a Fiber and Their Application to Holography,” Proc. Annual Meeting of IECE of Japan, S15-2 (in Japanese) (March 1975).Google Scholar
  18. 18.
    Suhara, T., Nishihara, H. and Koyama, J., “Analysis of the Radiation Characteristics of Optical Fibers for the Hologram Reconstruction,” Report of Fukusha-Kagaku Kenkyukai (in Japanese) (Dec. 1974).Google Scholar
  19. 19.
    Suhara, T., Nishihara, H. andKoyama, J., “Far Radiation Field Emitted from an Optical Fiber and Its Application to Holography,”Trans. of the IECE of Japan,E60 (10),533–540 (Oct.1977).Google Scholar
  20. 20.
    Rashleigh, S.C. andUlrich, R., “Polarization Mode Dispersion in Single-mode Fibers,”Opt. Let.,3 (2),60–62 (Aug.1978).Google Scholar
  21. 21.
    Ramaswamy, V., Standley, R.D., Sze, D. andFrench, W.G., “Polarization Effects in Short Length, Single-mode Fibers,”Bell Syst. Tech. J.,57 (3),635–651 (March1978).Google Scholar
  22. 22.
    Ramaswamy, V. andFrench, W.G., “Influence of Non-circular Core on Polarization Performance of Single Mode Fibers,”Elect. Let.,14 (5),143–144 (March1978).Google Scholar
  23. 23.
    Sollid, J.E., “Holographic Interferometry Applied to Measurements of Small Static Displacements of Diffusely Reflecting Surfaces,”Appl. Opt.,8 (8),1587–1595 (Aug.1969).Google Scholar
  24. 24.
    Suzuki, T., “Interferometric Uses of Optical Fiber,”Japanese J. of Appl. Phys.,5 (11),1065–1074 (Nov.1966).Google Scholar
  25. 25.
    Timoshenko, S. andWoinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill, New York (1959).Google Scholar
  26. 26.
    Timoshenko, S., Strength of Materials, D. Van Nostrand Co., New York (1940).Google Scholar
  27. 27.
    Rose, H.W., Williamson, T.L. andCollins, Jr., S.A., “Polarization Effects in Holography,”Appl. Opt.,9 (10),2394–2396 (Oct.1970).Google Scholar
  28. 28.
    Simon, A. andUlrich, R., “Evolution of Polarization Along a Single-mode Fiber,”Appl. Phys. Let.,31 (8),516–520 (Oct.1977).Google Scholar
  29. 29.
    Stolen, R.H., Ramaswamy, V., Kaiser, P. andPleibel, W., “Linear Polarization in Birefringent Single-mode Fibers,”Appl. Phys. Let.,33 (8),699–701 (Oct.1978).Google Scholar
  30. 30.
    Namihira, Y., Kudo, M. andMushiake, Y., “Effect of Mechanical Stress on the Transmission Characteristics of Optical Fiber,”Electronics and Comm. in Japan,60-C (7),107–115 (July1977).Google Scholar

Copyright information

© Society for Experimental Mechanics, Inc. 1983

Authors and Affiliations

  • J. A. Gilbert
    • 1
  • T. D. Dudderar
    • 2
  • M. E. Schultz
    • 1
  • A. J. Boehnlein
    • 1
  1. 1.Department of Civil EngineeringUniversity of Wisconsin-MilwaukeeMilwaukee
  2. 2.Bell LaboratoriesMurray Hill

Personalised recommendations