Mathematical Notes

, Volume 60, Issue 3, pp 344–346 | Cite as

Completeness and minimality of a half of the set of eigenfunctions for the biharmonic equation in a half-strip

  • Kh. R. Mamedov
Brief Communications

Key words

biharmonic equation eigenfunction expansions Kondrat'ev spectral problems complete systems minimal systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Vorovich, in:Proceedings of II All-Union Congress on Theoretical and Applied Mechanics [in Russian], Vol. 3, Nauka, Moscow (1966), pp. 116–136.Google Scholar
  2. 2.
    V. E. Koval'chuk and I. I. Vorovich,Prikl. Mat. Mekh. [J. Appl. Math. Mech.],31, No. 5, 861–869 (1967).MathSciNetGoogle Scholar
  3. 3.
    V. E. Koval'chuk,Prikl. Mat. Mekh. [J. Appl. Math. Mech.],33, No. 3, 511–518 (1969).MATHMathSciNetGoogle Scholar
  4. 4.
    Yu. A. Ustinov and Yu. I. Yudovich,Prikl. Mat. Mekh. [J. Appl. Math. Mech.],73, No. 4, 706–714 (1973).Google Scholar
  5. 5.
    A. A. Shkalikov, in:Nonclassical Problems for Equations of Mathematical Physics [in Russian], Novosibirsk (1982), pp. 171–174.Google Scholar
  6. 6.
    A. A. Shkalikov,Trudy Sem. Petrovsk. [in Russian],9, 190–229 (1983).MATHMathSciNetGoogle Scholar
  7. 7.
    A. A. Shkalikov,Trudy Sem. Petrovsk. [in Russian],41, 140–224 (1989).Google Scholar
  8. 8.
    A. M. Gomilko and V. A. Mileshko,Izv. Akad. Nauk SSSR Mekh. Tverd. Tela], No. 4, 48–53 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • Kh. R. Mamedov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations