Advertisement

Hyperfine Interactions

, Volume 77, Issue 1, pp 307–314 | Cite as

TDPAC study of the thermal evolution of the quadrupole parameters in NiTiF6·6H2O between 30 and 400 K

  • M. Ceolín
  • M. A. Taylor
  • J. A. Martínez
  • A. M. Rodriguez
  • H. Saitovitch
  • P. R. J. Silva
Article

Abstract

The thermal evolution of the quadrupole parameters determined using the time differential perturbed angular correlation technique at titanium sites, in NiTiF6·6H2O is presented. The study of the thermal behavior of the hyperfine quadrupole interaction allows one to observe the occurrence of a structural phase transition around 140 K. The thermal evolution of the hyperfine quadrupole frequency of the high temperature phase was interpreted in terms of the flip motion of the water molecules through an ad hoc model. Parameters associated with the model are in good agreement with independent data obtained by Raman scattering. The agreement gives support to the model to be a valuable tool to study the dynamics of molecular groups in crystalline hydrates.

Keywords

Phase Transition Raman Scattering Temperature Phase Angular Correlation Structural Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bose, K. Roy and A. Goshray, Phys. Rev. B 35 (1987) 6619.ADSGoogle Scholar
  2. [2]
    H.M. Cheung and R.L. Lichti, J. Phys. C 18 (1985) 6157.ADSGoogle Scholar
  3. [3]
    T.E. Jenkins and J. Lewis, Spectrochim. Acta A 37 (1981) 47.Google Scholar
  4. [4]
    R.L. Lichti, J. Chem. Phys. 78 (1983) 7323.CrossRefADSGoogle Scholar
  5. [5]
    R.S. Rubins, B.C. Griffin and R. Burris, J. Chem. Phys. 64 (1976) 3349.CrossRefADSGoogle Scholar
  6. [6]
    R.L. Lichti, I-Yuan Jan and K.G. Kasey, J. Solid State Chem. 78 (1989) 250.CrossRefADSGoogle Scholar
  7. [7]
    M. Bose, K. Roy and A. Goshray, J. Phys. C 17 (1984) 5277.ADSGoogle Scholar
  8. [8]
    H. Megaw,Crystal Structure: A Working Approach (Saunders, London, 1973).Google Scholar
  9. [9]
    L.A. Mendoza Zelis, Doctoral Thesis, University of La Plata, Argentina (1977).Google Scholar
  10. [10]
    R.L. Davidovitch, T. Kaidalova and T.G. Levchishina, Zh. Struc, Khim. 12 (1971) 185.Google Scholar
  11. [11]
    H. Bayer, Z. Phys. 130 (1951) 227.Google Scholar
  12. [12]
    T. Kushida, G.B. Benedek and N. Bloembergen, Phys. Rev. 104 (1956) 1364.CrossRefADSGoogle Scholar
  13. [13]
    R. Ingalls, Phys. Rev. 133 (1964) A787.Google Scholar
  14. [14]
    E. Shempp and P.R.P. Silva, J. Chem. Phys. 58 (1973) 5116.Google Scholar
  15. [15]
    E. Merzbacher,Quantum Mechanics (Wiley, New York, 1970).Google Scholar
  16. [16]
    S. Ray, A. Zalkin and D.H. Templeton, Acta Cryst. B 29 (1973) 2741.Google Scholar
  17. [17]
    D.F. Baisa, A.I. Barabash, G.A. Puchkovskahya and Yu.A. Frolkov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 39 (1975) 2487.Google Scholar
  18. [18]
    T.E. Jenkins and J. Lewis, J. Raman Spectry. 11 (1981) 1.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • M. Ceolín
    • 1
  • M. A. Taylor
    • 1
  • J. A. Martínez
    • 1
    • 3
  • A. M. Rodriguez
    • 1
    • 4
  • H. Saitovitch
    • 2
  • P. R. J. Silva
    • 2
  1. 1.Departamento de FísicaUniversidad Nacional de La Plata, CC67 (1900)La PlataArgentina
  2. 2.Centro Brasileiro de Pesquisas FisicasRio de JaneiroBrazil
  3. 3.CICPBAArgentina
  4. 4.CONICETArgentina

Personalised recommendations