Advertisement

Hyperfine Interactions

, Volume 77, Issue 1, pp 181–199 | Cite as

Muon catalyzed fusion of deuterium-tritium at elevated densities

  • G. Cripps
  • A. A. Harms
  • B. Goel
Article
  • 31 Downloads

Abstract

Calculations of the number of deuterium-tritium fusions a muon might catalyze in temperature and density conditions found in moderate fuel compressions are examined. Analytic models of muon catalyzed fusion reactions including muon sticking suggest that a deuterium-tritium fuel target with injected muons achieves an energetically viable number of fusions per muon only at fuel temperatures less than about 5 eV and fuel densities greater than 100 times LHD.

Keywords

Thin Film Density Condition Fusion Reaction Fuel Temperature Fuel Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ya. B. Zel'dovich and S.S. Gershtein, Sov. Phys. Usp. 3(1960)581.Google Scholar
  2. [2]
    L. Bracci and G. Fiorentini, Phys. Rep. 86(1982)169.CrossRefADSGoogle Scholar
  3. [3]
    S.S. Gershtein, Yu.V. Petrov and L.I. Ponomarev, Sov. Phys. Usp. 33(1990)591.Google Scholar
  4. [4]
    S.E. Jones, in:AIP Conf. 181, Muon Catalyzed Fusion, ed. S.E. Jones, J. Rafelski and H.J. Monkhorst, Sanibel Island, FL (1988) p. 2.Google Scholar
  5. [5]
    Yu. Petrov, Muon. Catal. Fusion 1(1987)351.Google Scholar
  6. [6]
    M. Jändel et al., Phys. Rev. A40(1989)2799.ADSGoogle Scholar
  7. [7]
    L.I. Men'shikov, Translation of Preprint No. 4589/2, Institute of Atomic Energy, Moscow (1988).Google Scholar
  8. [8]
    L.I. Men'shikov and L.N. Somov, Sov. Phys. Usp. 33(1990)616.CrossRefGoogle Scholar
  9. [9]
    L.I. Men'shikov and L.I. Ponomarev, JETP Lett. 46(1987)312.ADSGoogle Scholar
  10. [10]
    G. Cripps, A.A. Harms and B. Goel, KFK Report No. 4763, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany (1991).Google Scholar
  11. [11]
    A.A. Harms, G. Cripps and B. Goel, in:Proc. 5th Int. Conf. on Emerging Nuclear Energy Systems (ICENES'89), Karlsruhe, Germany, ed. U. von Möllendorff and B. Goel (World Scientific, Singapore, 1989) p. 267.Google Scholar
  12. [12]
    G. Cripps, A.A. Harms and B. Goel, in:Proc. 6th Int. Conf. on Emerging Nuclear Energy Systems (IECENES'91), Monterey, CA, Fusion Technology 20(1991)904.Google Scholar
  13. [13]
    W.P.S. Tan, Nature 263(1976)656.CrossRefADSGoogle Scholar
  14. [14]
    E.P. Hincks et al., Nature 269(1977)584.CrossRefADSGoogle Scholar
  15. [15]
    W. Seifritz and B. Goel, Atomenergie-Kerntechnik 43(1983)3.Google Scholar
  16. [16]
    A. Kumar and S. Sahin, in:Alternative Energy Sources V, Part E:Nuclear Conservation/Environment, ed. T.N. Veziroglu (Elsevier, Amsterdam, 1983) p. 228.Google Scholar
  17. [17]
    A.E. Robson, in:Proc. 6th Int. Conf. on Emerging Nuclear Energy Systems (ICENES'91), Monterey, CA, Fustion Technology 20(1991)858.Google Scholar
  18. [18]
    A. Hasegawa et al., Nucl. Fusion 28(1988)3.MathSciNetGoogle Scholar
  19. [19]
    A.L. Ruoff, in:High Pressure and Low Temperature Physics, ed. C.W. Chu and J.A. Woollam (Plenum Press, New York, 1978) p. 16.Google Scholar
  20. [20]
    S.E. Jones, Poster presented at the6th Int. Conf. on Emerging Nuclear Energy Systems (ICENES'91), Monterey, CA.Google Scholar
  21. [21]
    G.I. Kerley, Report No. LA-4776, Los Alamos Scientific Laboratory (1972).Google Scholar
  22. [22]
    H. Takahashi et al., Atomenergie 36(1961)593.Google Scholar
  23. [23]
    A.S. Wightman, Phys. Rev. 77(1950).Google Scholar
  24. [24]
    B. Müller et al., in:AIP Conf. 181, Muon Catalyzed Fusion, ed. S.E. Jones, J. Rafelski and H.J. Monkhorst, Sanibel Island, FL (1988) p. 105.Google Scholar
  25. [25]
    L.I. Men'shikov and L.I. Ponomarev, JETP Lett. 39(1984)664.ADSGoogle Scholar
  26. [26]
    L.I. Ponomarev, Contemp. Phys. 31(1990)219.ADSGoogle Scholar
  27. [27]
    D. Harley, Ph.D. Thesis, University of Arizona (1991).Google Scholar
  28. [28]
    S.I. Vinitskii et al., Sov. Phys. JETP 47(1978).Google Scholar
  29. [29]
    H.E. Rafelski et al., in:Progress in Particle and Nuclear Physics, Vol. 22, ed. A. Faessler (Permagon, New York, 1989), p. 279.Google Scholar
  30. [30]
    C. Petitjean, Muon Catal. Fusion 1(1987)89.Google Scholar
  31. [31]
    L.V. Alt'shuler, Ye.A. Dynin and V.A. Svidinskiy, Zh. Eksper. Teor. fiz. Pis'ma 17(1973)20.Google Scholar
  32. [32]
    J.K. Scudder, Report No. UCRL 51767, Lawrence Livermore Laboratory (1975).Google Scholar
  33. [33]
    Ya.B. Zel'dovich and Yu.P. Raizer,Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic Press, London, 1966).Google Scholar
  34. [34]
    R.M. Moore, Preprint No. UCRL-84991, Part I and II, Lawrence Livermore Laboratory (1981).Google Scholar
  35. [35]
    G.I. Kerley, Report No. LA-4760, Los Alamos Scientific Laboratory (1971).Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • G. Cripps
    • 1
  • A. A. Harms
    • 1
  • B. Goel
    • 2
  1. 1.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada
  2. 2.Institut für Neutronenphysik und Reaktortechnik, Kernforschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations