Hyperfine Interactions

, Volume 77, Issue 1, pp 19–28 | Cite as

Mössbauer study of synthetic oxidized vivianite at room temperature

  • D. Rouzies
  • J. M. M. Millet


Mössbauer spectroscopy has been used to study synthetic vivianites which are oxidized at room temperature in air. Six doublets, three ferrous and three ferric, have been used to fit the spectra recorded at 295 K. They have been attributed to the cations occupying the two different crystallographic sites. These sites were either isolated (I) or in pairs (II). In the case of the paired sites, two types of ferric cations and two types of ferrous cations can be distinguished, depending upon the degree of oxidation of the cation occupying the closest isolated site. Our experimental data showed that the ferrous cations occupying sites I were preferentially oxidized at the beginning of the oxidation process and that the rates of oxidation of the cations occupying two sites were comparable at a high oxidation level. We have also observed that the concentration of Fe3+ tends to a stabilized value of approximately 50% after 375 days, which also corresponds to the limit of stability of the vivianite structure.


Oxidation Spectroscopy Experimental Data Thin Film Oxidation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Vochten, E. de Grave and G. Stoops, Neues Jahrb. Mineral. Abh. 137(1979)208.Google Scholar
  2. [2]
    E. de Grave, R. Vochten, H. Desseyn and D. Chambaere, J. Phys. 41(1980)407.Google Scholar
  3. [3]
    C.A. McCammon and R.G. Burns, Am. Miner. 65(1980)361.Google Scholar
  4. [4]
    G.P. Nembrini, J.A. Capobianco, M. Viel and A.F. Williams, Geochim. Cosmochem. Acta 47(1983)1459.ADSGoogle Scholar
  5. [5]
    J.L. Dormann and J.F. Poullen, Bull. Miner. 103(1980)633.Google Scholar
  6. [6]
    J.L. Dormann, M. Gaspérin and J.F. Poullen, Bull. Miner. 105(1982)147.Google Scholar
  7. [7]
    D. Hanzel, W. Meisel, Darko Hanzel and P. Gütlich, Solid State Commun. 76(1990)307.CrossRefGoogle Scholar
  8. [8]
    E.J. Evans, Pharmacol. J. (1897) 141.Google Scholar
  9. [9]
    J.M.M. Millet, C. Virely, M. Forissier, P. Bussière and J.C. Vedrine, Hyp. Int. 46(1989)619.Google Scholar
  10. [10]
    B.F. Mentzen, J. Appl. Cryst. 22(1989)100.CrossRefGoogle Scholar
  11. [11]
    T.L. Watson, Am. Miner. 3(1918)159.Google Scholar
  12. [12]
    C. Ritz, E.J. Essene and D.R. Peacor, Am. Miner. 59(1974)896.Google Scholar
  13. [13]
    H. Mori and T. Ito, Acta Cryst. 3(1950)1.CrossRefGoogle Scholar
  14. [14]
    R. Chevalier, M. Gaspérin and J.F. Poullen, Compt. Rend. Acad. Sci. Paris 291(1980)661.Google Scholar
  15. [15]
    U. Gonser and R.W. Grant, Phys. Stat. Sol. 21(1967)331.Google Scholar
  16. [16]
    E. Mattievich and J. Danon, J. Inorg. Nucl. Chem. 39(1977)569.CrossRefGoogle Scholar
  17. [17]
    P. Fedji, J.F. Poullen and M. Gaspérin, Bull. Miner. 103(1980)135.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • D. Rouzies
    • 1
  • J. M. M. Millet
    • 1
  1. 1.Institut de Recherche sur la Catalyse, CNRS, conventionné avec l'Université Claude-Bernard, Lyon IVilleurbanne CedexFrance

Personalised recommendations