Skip to main content
Log in

Hybrid experimental-numerical stress analysis

  • The 1983 William M. Murray Lecture
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The hybrid experimental-numerical stress-analysis technique, which saw limited applications during the 1950's, has been resurrected with the vastly improved numerical techniques of the 1970's. By inputing the experimental results as initial and boundary conditions, modern computer codes are executed in its generation and application modes to yield results which are unobtainable when only one of the two techniques is used. The hybrid technique thus exemplifies the complementary role of the experimental and numerical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Durelli, A.J., Applied Stress Analysis, Prentice-Hall Inc., Englewood Cliffs, NJ, 6 (1967).

    Google Scholar 

  2. Dally, J.W. and Riley, W.F., Experimental Stress Analysis, McGraw-Hill, 459–467 (1978).

  3. Lee, G.H., An Introduction to Experimental Stress Analysis, John Wiley & Sons, New York, 202–208 (1950).

    Google Scholar 

  4. Frocht, M.M., Photoelasticity, John Wiley & Sons, New York,2,238–332 (1948).

    Google Scholar 

  5. Frocht, M.M., Photoelasticity, John Wiley & Sons, New York,1,252–286 (1941).

    Google Scholar 

  6. Coker, E.G. andFilon, L.N.G., A Treatise on Photoelasticity, Cambridge Univ. Press, London, 143–145 (1931).

    Google Scholar 

  7. Durelli, A.J. andRiley, W.F., Introduction to Photomechanics, Prentice-Hall, Englewood Cliffs, 185–186 (1965).

    Google Scholar 

  8. Laermann, Karl-Hans, “Recent Developments and Further Aspects of Experimental Stress Analysis in the Federal Republic of Germany and Western Europe,”Experimental Mechanics,21 (2),49–57 (Feb. 1981).

    Article  Google Scholar 

  9. Masubuchi, K., “The Need for Analytical/Experimental Orchestrated Approaches to Solve Residual Stress Problems in Real Structures,” ASME Symp. Nondestructive Methods for Material Property Determination, Hershey, PA (April 1983).

  10. Rao, G.V., “Experimental-numerical Hybrid Techniques for Body-force and Thermal Stress Problems — Applications in Power Industry,” Proc. 1982 Joint Conf. on Experimental Mechanics, SESA, 398–404 (1982).

  11. Barishpolsky, B.M., “A Combined Experimental and Numerical Method for the Solution of Generalized Elasticity Problem,”Experimental Mechanicsm20 (10),345–349 (Oct. 1980).

    Google Scholar 

  12. Barishpolsky, B.M., “Development of a Combined Experimental and Numerical Method for the Thermoelastic Analysis,” Proc. 1981 SESA Spring Meeting (1981).

  13. Moslehy, F.A. and Ranson, W.F., “Laser Speckle Interferometry and Boundary Integral Techniques in Experimental Stress Analysis,” Developments Theoretical and Applied Mechanics, ed. J.E. Stoneking,X,The Univ. of Tennessee, 473–492 (1980).

  14. Balas, J., Sládek, J. andDržík, M., “Stress Analysis by Combination of Holographic Interferometry and Boundary-integral Method,”Experimental Mechanics,23 (2),196–202 (June 1983).

    Google Scholar 

  15. Umeagukwu, I., Peters, W. and Ranson, W.F., “The Experimental Boundary Integral Method in Photoelasticity,” Developments in Theoretical and Applied Mechanics, ed. T.J. Chung and G.R. Karr, The Univ. of Alabama in Huntsville,XI,181–191, (1982).

  16. Collins, R. andvan der Werff, T., Mathematical Models of the Dynamics of the Human Eye, Springer-Verlag, Berlin, 1 (1980).

    Google Scholar 

  17. Enoch, J.M., “Causes and Costs of Visual Impairment,” Vision and Its Disorders, NINDB Monograph No. 4, HEW, 23–28 (1967).

  18. Friedenwald, J.S., “Contribution to the Theory and Practice of Tonometry,”Amer. J. Ophthalmology,20,985–1024 (1937).

    Google Scholar 

  19. Nyquist, G.N., “Rheology of the Cornea: Experimental Techniques and Results,”Exp. Eye Res.,7,183–188 (1968).

    Google Scholar 

  20. Gloster, J., Perkins, E.S. andPommiesr, M., “Extensibility of Strips of Sclera and Cornea,”Brit. J. Ophthalmology,41,103–110 (1957).

    Google Scholar 

  21. Woo, S., Kobayashi, A.S., Schlegel, W.A. andLawrence, C., “Nonlinear Material Properties of Intact Cornea and Sclera,”Exp. Eye Res.,14,29–39 (1972).

    Article  Google Scholar 

  22. Woo, S., Kobayashi, A.S., Schlegel, W.A. andLawrence, C., “Mathematical Model of the Corneo-Scleral Shell as Applied to Pressure-Volume Relations and Applanation Tonometry, Annals of Biomedical Eng.,1,87–98 (Sept. 1972).

    Google Scholar 

  23. St. Helen, R. andMcEwen, W.K., “Rheology of the Human Eye,”Amer. J. Ophthalmology,51,539–548 (1961).

    Google Scholar 

  24. Kobayashi, A.S., Brown, C.A. and Emery, A.F., “Viscoelastic Response of the Corneo-Sclera Shell Under Tonometer Loading,” ASME Preprint 75-WA/Bio-2 (1975).

  25. Drucker, D.C., “Thoughts on the Present and Future Interrelation of Theoretical and Experimental Mechanics,”Experimental Mechanics,8 (3),97–106 (Mar. 1968).

    Article  Google Scholar 

  26. Gloster, J., “Tonometry and Tonography,” Inter. Ophthalmology Clinics,5 (1965).

  27. “A Critical Evaluation of Numerical Solutions to the ‘Benchmark’ Surface Flaw Problem,” ed. J.J. McGowan, SESA (1980).

  28. Kanninen, M.F., Rybicki, E.F., Stonesifer, R.B., Broek, D., Rosenfield, A.R., Marschall, C.W. and Hahn, G.T., “Elastic-Plastic Fracture Mechanics for Two-Dimensional Stable Crack Growth and Instability Problems,” Elastic-Plastic Fracture, ed. J.D. Landes, J.A. Begley and G.A. Clarke, ASTM STP 668, 121–150 (1979).

  29. Shih, C.F., deLorenzi, H.G. and Andrews, W.R., “Studies on Crack Initiation and Stable Crack Growth,” Elastic-Plastic Fracture, ed. J.D. Landes, J.A. Begley and G.A. Clarke, ASTM STP 668, 65–120 (1979).

  30. Wilson, W.K. andOsias, J.R., “A Comparison of Finite Element Solutions for an Elastic-Plastic Problem,”Int. J. Fract.,14,R95–108 (1978).

    Google Scholar 

  31. Dally, J.W., “Dynamic Photoelastic Studies of Fracture,”Experimental Mechanics,19 (10),349–361 (Oct 1979).

    Article  Google Scholar 

  32. Shmuely, M. and Perl, M., “The SMF2D Code for Proper Simulation of Crack Propagation,” Crack Arrest Methodology and Applications, ed. G.T. Hahn and M.F. Kanninen, ASTM STP 711, 54–69 (1980).

  33. Popelar, C.H. andGehlen, P.C., “Modeling of Dynamic Crack Propagation: II. Validation of Dynamic Analysis,”Int. J. Fract.,15,159–177 (1979).

    Google Scholar 

  34. Hodulak, L., Kobayashi, A.S. and Emery, A.F., “A Critical Examination of a Numerical Fracture Dynamic Code,” Fract. Mech., ed. P.C. Paris, ASTM STP 700, 174–188 (1980).

  35. Nishioka, T. andAtluri, S.N., “Numerical Analysis of Dynamic Crack Propagation: Generation and Prediction Studies,”Eng. Fract. Mech.,16, (3),303–332 (1982).

    Google Scholar 

  36. Kalthoff, J.F., Beinert, J. and Winkler, S., “Measurements of Dynamic Stress Intensity Factors for Fast Running and Arresting Cracks in Double Cantilever Beam Specimens,” Fast Fracture and Crack Arrest, ed. G.T. Hahn and M.F. Kanninen, ASTM STP 627, 161–176 (1977).

  37. Kalthoff, J.F., Beinert, J. and Winkler, S., “Influence of Dynamic Effects on Crack Arrest,” Institut fur Festkorpemechanik, EPRI RP 1022-1, IKFM 404012 (Aug. 1978).

  38. Kobayashi, A.S., Seo, K., Jou, J.-Y. andUrabe, Y., “Dynamic Analysis of Homalite-100 and Polycarbonate Modified Compact-tension Specimens,”Experimental Mechanics,20 (9),73–79 (Sept. 1980).

    Article  Google Scholar 

  39. Dally, J.W., Shukla, A. and Kobayashi, T., “A Dynamic Photoelastic Study of Crack Propagation in a Ring Specimen,” Crack Arrest Methodology and Applications, ed. G.T. Hahn and M.F. Kanninen, ASTM STP 711, 161–177 (June 1980).

  40. Kobayashi, A.S., Emery, A.F. and Liaw, B.-M., “Dynamic Fracture of Three Specimens,” Fracture Mechanics: Fourteenth Symposium—Vol. II: Testing and Applications, ed. J.C. Lewis and G. Sines, ASTM STP 791; II-251-II-265 (1983).

  41. Shukla, A. andDally, J.W., “A Photoelastic Study of Energy Loss During a Fracture Event,”Experimental Mechanics,21 (4),163–168 (April 1981).

    Article  Google Scholar 

  42. Mall, S., Kobayashi, A.S. and Loss, F.J., “Dynamic Fracture Analysis of Notch Bend Specimen,” Crack Arrest Methodology and Applications, ed. G.T. Hahn and M.F. Kanninen, ASTM STP 711, 70–85 (1980).

  43. Kobayashi, A.S., Ramulu, M. andMall, S., “Impacted Notch Bend Specimens,”ASME J. Pressure Vessel Tech.,104,25–30 (Feb. 1980).

    Google Scholar 

  44. Kobayashi, A.S., “Numerical Analysis in Fracture Mechanics,” to be published in the Proc. Inter. Conf. Application of Fract. Mech. to Matls. and Struct., Freiburg, Germany (June 1983).

  45. Kobayashi, A.S., Emery, A.F. and Liaw, B.-M., “Dynamic Fracture Toughness of Glass,” to be published in the Proc. Inter. Symp. Fract. Mech. of Ceramics, Plenum Press (1983).

  46. Kobayashi, A.S., Emery, A.F. andLiaw, B.-M., “Dynamic Fracture Toughness of Reaction Bonded Silicon Nitride,”J. Amer. Ceramic Soc.,23 (2),151–155 (Feb. 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, A.S. Hybrid experimental-numerical stress analysis. Experimental Mechanics 23, 338–347 (1983). https://doi.org/10.1007/BF02319261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02319261

Keywords

Navigation