Skip to main content
Log in

Use of tensor polynomials for constructing an equation for turbulence scale in semiempirical models

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Thek-kl-model of turbulence based on the equation of second two-point moments (pointsA andB) of the fluctuating velocity field is presented. The second and third moments entering into this equation are expressed using polynomials whose terms are products of the tensor components characterizing a given turbulent motion and scalar functions of the distanceAB. ForAB=0 the equation obtained gives thek-turbulence energy balance equation and, on being integrated overAB from 0 to ∞, the transport equation for thekl-quantity (l is the integral turbulence scale). The model is used for calculating mixing layers, plane and circular jets, the wake behind a cylinder, tube and channel flows, and the boundary layer on a plate. The results of all the calculations agree well with the experimental data for a single set of empirical coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,”Comput. Math. Appl. Mech. and Eng.,2, 269 (1974).

    Google Scholar 

  2. W. P. Jones and B. E. Launder, “The calculation of low-Reynolds-number phenomena with a 2-equation model of turbulence,”Int. J. Heat and Mass Transfer,16, 1119 (1973).

    Google Scholar 

  3. K. Khan'yalich and B. E. Launder, “Allowance for irrotational stresses in the turbulent energy dissipation equation,”Teor. Osn. Inzh. Rasch. 102, No. 1, 149 (1980).

    Google Scholar 

  4. S. B. Pope, “An explanation of the turbulent round-jet/plane-jet anomaly,”AIAA J.,16, 279 (1978).

    ADS  Google Scholar 

  5. J. Rotta, “Statistische Theorie nichthomogener Turbulenz,”Z. Phys.,131, 51 (1951).

    MATH  MathSciNet  Google Scholar 

  6. G. S. Glushko, “A differential equation for the turbulence scale and a calculation of the turbulent boundary layer on a plane plate,” in:Turbulent Flows [in Russian], Nauka, Moscow (1970), p. 37.

    Google Scholar 

  7. V. M. Ievlev,Turbulent Motion of High-Temperature Continua [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  8. W. Rodi and D. B. Spalding, “A two-parameter model of turbulence and its application to free jet,”Wärme-und Stoffūbertragung,3, No. 2, 85 (1970).

    Google Scholar 

  9. K. H. Ng and D. B. Spalding, “Predictions of 2-dimensional boundary layers on smooth walls with a 2-equation model of turbulence,”Int. J. Heat and Mass Transfer,19, 1161 (1976).

    Article  ADS  Google Scholar 

  10. H. Volmers and J. C. Rotta, “Similar solutions of the mean velocity, turbulent energy and length scale equation,”AIAA J.,15, 714 (1977).

    Google Scholar 

  11. D. Jeandel, J. Brison, and J. Mathieu, “Modeling methods in physical and spectral space,”Phys. Fluids,21, 169, (1978).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. W. Nee and L. S. G. Kovaznay, “Simple phenomenological theory of turbulent shear flows,”Phys. Fluids,12, 473, (1969).

    Google Scholar 

  13. A. N. Sekundov, “Application of a differential equation for the turbulent viscosity to an analysis of plane non-self-similar flows,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 114, (1971).

  14. A. N. Kolmogorov, “Equations of turbulent motion of an incompressible fluid,”Izv. Akad. Nauk SSSR, Ser. Phiz.,6, 56 (1942).

    Google Scholar 

  15. P. G. Saffman, “A model for inhomogeneous turbulent flow,”Proc. Roy. Soc. Ser. A,317, No. 1530, 417 (1970).

    ADS  MATH  Google Scholar 

  16. D. B. Spalding, “Concentration fluctuations in a round turbulent free jet,”Chem. Eng. Sci.,26, 95 (1971).

    MathSciNet  Google Scholar 

  17. P. G. Saffman and D. C. Wilcox, “Turbulence-model predictions for turbulent boundary layers,”AIAA J.,12, 541 (1974).

    Google Scholar 

  18. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Three-parameter model of translation turbulence,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 13, (1978).

  19. V. G. Lushchik, A. A. Pavel'ev, and A. E. Yakubenko, “Three-parametric model of turbulence: calculation of heat transfer,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 40, (1986).

  20. R. Shistel, “Sur le concept d'échelles multiples en modelisation des écoulements turbulents,”J. Mec. Theor. Appl.,2, 417 (1983).

    ADS  Google Scholar 

  21. K. Khan'yalich, B. E. Launder, and P. Shistel, “The multiple time scale concept in modeling of turbulent transfer,” in:Turbulent Translation Flows, vol. 2 [in Russian], Mashinostroenie, Moscow (1983), p. 42.

    Google Scholar 

  22. N. I. Akatnov, “An equation for turbulence scale in the case of arbitrary three-dimensional average motion of a fluid,” in: Abstracts of Proceedings of Sixth All-Union Congress on Theoretical and Applied Mechanics, Tashkent, 24–30 September, 1986 [in Russian], Tashkent (1986).

  23. I. S. Khintse,Turbulence [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  24. G. K. Batchelor,The Theory of Homogeneous Turbulence, Cambridge (1953).

  25. N. I. Akatnov, “Two-scale semiempirical theory of turbulent boundary layers and jets,”Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 17, (1982).

  26. H. W. Liepmann and J. Laufer, “Investigations of free turbulent mixing,”NACA, Tech. Notes, No. 1257 (1947).

  27. I. Wygnanski and H. E. Fiedler, “The two-dimensional mixing region,”J. Fluid Mech.,41, 327 (1970).

    ADS  Google Scholar 

  28. R. P. Patel, “An experimental study of a plane mixing layer,”AIAA J.,11, 67 (1973).

    Google Scholar 

  29. L. J. Bradbury, “The structure of a self-preserving turbulent plane jet,”J. Fluid Mech.,23, 31 (1965).

    ADS  Google Scholar 

  30. G. Heskestad, “Hot-wire measurements in a plane turbulent jet,”J. Appl. Mech.,32, 721 (1965).

    Google Scholar 

  31. E. Gutmark and I. Wygnanski, “The planar turbulent jet,”J. Fluid Mech.,32, 465 (1976).

    ADS  Google Scholar 

  32. I. Wygnanski and H. E. Fiedler, “Some measurements in the self-preserving jet,”J. Fluid Mech.,38, 577 (1969).

    ADS  Google Scholar 

  33. A. A. Townsend,Structure of Turbulent Shear Flow, Cambridge University Press (1956).

  34. G. Comte-Bellot,Turbulent Flow in a Channel with Parallel Walls [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  35. J. Laufer, “Investigation of turbulent flow in a two-dimensional channel,” NACA Rep., No. 1053 (1952).

  36. J. Clark, “A study of incompressible turbulent boundary layers in channel flow,”J. Basic Eng.,90, 455 (1968).

    Google Scholar 

  37. L. I. Sedov,Similarity and Dimensional Methods in Mechanics, Academic Press (1957).

  38. J. Laufer, “The structure of turbulence in fully developed pipe flow,”NACA Rep., No. 1174 (1954).

  39. I. Wygnanski and F. H. Champagne, “On transition in a pipe,”J. Fluid Mech.,59, 281 (1973).

    ADS  Google Scholar 

  40. C. Lawn, “Determination of the rate of dissipation in turbulent pipe flow,”J. Fluid Mech.,48, 477 (1971).

    ADS  Google Scholar 

  41. P. S. Klebanoff, “Characteristics of turbulence in a boundary layer with zero pressure gradient,’NACA Rep., No. 1247 (1955).

  42. F. Hama, “Boundary-layer characteristics for smooth and rough surfaces,”Trans. Soc. Naval Arch. Marine Engrs.,62, No. 563, 266 (1955).

    Google Scholar 

Download references

Authors

Additional information

St. Petersburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 51–64, July–August, 1994.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akatnov, N.I. Use of tensor polynomials for constructing an equation for turbulence scale in semiempirical models. Fluid Dyn 29, 479–490 (1994). https://doi.org/10.1007/BF02319069

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02319069

Keywords

Navigation