Plant Cell, Tissue and Organ Culture

, Volume 33, Issue 3, pp 303–313 | Cite as

Anther culture of kale (Brassica oleracea L. convar.acephala (DC.) Alef.)

  • Martin Kieffer
  • Michael P. Fuller
  • Jean-Eric Chauvin
  • Alain Schlesser
General Papers


The pollen development and androgenic ability of 18 kale (Brassica oleracea convar.acephala) genotypes was observed during an anther culture study. Anther culture was successful in 6 of the genotypes and the highest yield obtained was 17 embryos per 100 anthers plated. Two stages of anther development were identified as being responsive to anther culture. The first and most responsive was that corresponding to the late uninucleated stage and the second to the late binucleated stage. These stages correspond with the onset of mitotic events in the microspores. Pollen viability was studied and low viability was noted which declined to zero after 9 days of anther culture. The initial viability level however was not clearly related to androgenic ability. The significance of the production of haploid and dihaploid kale genotypes in the study and breeding of resistance to clubroot is discussed.

Key words

anther culture Brassica oleracea convar acephala clubroot kale microspore development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnison PG, Donaldson P, Jackson A, Semple C & Keller WA (1990a) Genotype-specific response of cultured broccoli (Brassica oleracea var.italica) anthers to cytokinins. Plant Cell Tiss. Org. Cult. 20: 217–222Google Scholar
  2. Arnison PG, Donaldson P, Ho LC & Keller WA (1990b) The influence of various physical parameters on anther culture of broccoli (Brassica oleracea var.italica). Plant Cell Tiss. Org. Cult. 20: 147–155Google Scholar
  3. Arnison PG & Keller WA (1990) A survey of anther culture response ofBrassica oleracea L. cultivars grown under field conditions. Plant Breeding 104: 125–133Google Scholar
  4. Biddington NL & Robinson HT (1990) Variation in response to high temperature treatments in anther culture of Brussels sprouts. Plant Cell Tiss. Org. Cult. 22: 48–54Google Scholar
  5. Cao MO, Charlot F & Dore C (1990) Embryogenèse et régénération de plantes de chou à choucroute (Brassica oleracea L. sppcapitata) par culturein vitro de microspores isolées. C.R. Acad. Sci. Paris, t. 310, SérieIII: 203–209Google Scholar
  6. Couteau N (1990) Analyse du déterminisme génétique de la résistance à la hernie (Plasmodiophora brassicae) à partir de trois populations deBrassica oleracea. Mémoire de D.E.A., E.N.S.A. Rennes, Université de Rennes J (51 p.)Google Scholar
  7. Deslauriers C, Powell AD, Fuchs K & Pauls KP (1991) Flow cytometric characterization and sorting of culturedBrassica napus microspores. Biochimica et Biophysica Acta 1091: 165–172PubMedGoogle Scholar
  8. Fuller MP & Turton S (1990) Anther culture of winter-heading cauliflower. Acta Hort. 280: 329–331Google Scholar
  9. Heslop-Harrison J & Helsop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45: 115–120PubMedGoogle Scholar
  10. Jones DR, Ingram DS & Dixon GR (1981) Differential pathogenicity ofPlasmodiophora brassicae. Cruciferae Newsletter 6: 54–56Google Scholar
  11. Keller WA & Armstrong KC (1977) Embryogenesis and plant regeneration inBrassica napus anther cultures. Can. J. Bot. 55: 1383–1388Google Scholar
  12. Keller WA & Armstrong KC (1981) Production of anther-derived dihaploid plants in autotetraploid marrowstem kale (Brassica oleracea var.acephala). Can. J. Genet. Cytol. 23: 259–265Google Scholar
  13. Kott LS, Polsoni L & Beversdorf WD (1988) Cytological aspects of isolated microspore culture ofBrassica napus. Can J. Bot. 66: 1658–1664Google Scholar
  14. Messiaen CM, Blancard D, Rouxel F & Lafon R (1991) Les maladies des plantes maraîchères. Ed I.N.R.A. Paris (552 P.)Google Scholar
  15. Monteiro AA & Williams PH (1989) The exploration of genetic resources of portuguese cabbage and kale for resistance to severalBrassica diseases. Euphytica 41: 215–225Google Scholar
  16. Ockendon DJ (1983) Use of anther culture in Brussels sprouts breeding. Cruciferae Newsletter 8: 58–60Google Scholar
  17. Orton TJ & Browers MA (1985) Segregation of genetic markers among plans regenerated from cultured anthers of broccoli (Brassica oleracea var.italica). Theor. Appl. Genet. 69: 637–643CrossRefGoogle Scholar
  18. Scott R, Dagless E, Hodge R, Pyatt P, Soufleri I & Draper J (1991) Patterns of gene expression in developing anthers ofBrassica napus. Plant. Mol. Biol. 17: 195–207CrossRefPubMedGoogle Scholar
  19. Thomas G, Baron F, Rouxel F, Sanson MT & le Jeune B (1991) Etat actuel des connaissances sur la hernie du chou-fleur en Bretagne. Aujourd'hui et Demain 31: 20–25Google Scholar
  20. Thurling N & Chay PM (1984) The influence of donor plant genotype and environment on production of multicellular microspores in cultured anthers ofBrassica napus ssp.oleifera. Ann. Bot. 57: 681–683Google Scholar
  21. Vergne P, Delvallee I & Dumas C (1987) Rapid assessment of microspore and pollen development stage in wheat and maize using DAPI and membrane permeabilization. Stain Technol. 62: 299–304PubMedGoogle Scholar
  22. Yang Q, Chauvin JE & Herve Y (1992) A study of factors affecting anther culture of cauliflower (Brassica oleracea var.botrytis). Plant Cell Tiss. Org. Cult. 28: 289–296CrossRefGoogle Scholar
  23. Zaki MAM & Dickinson HG (1990) Structural changes during the first divisions of embryos resulting from anther and free microspore culture inBrassica napus. Protoplasma 156: 149–162CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Martin Kieffer
    • 1
    • 2
  • Michael P. Fuller
    • 2
  • Jean-Eric Chauvin
    • 1
  • Alain Schlesser
    • 1
  1. 1.GIP ‘Prince de Bretagne Biotechnologie’St Pol de LéonFrance
  2. 2.Seale Hayne Faculty of Agriculture, Food and Land UseUniversity of PlymouthNewton AbbotUK

Personalised recommendations