Plant Cell, Tissue and Organ Culture

, Volume 47, Issue 2, pp 135–144 | Cite as

A risk assessment study of plant genetic transformation usingAgrobacterium and implications for analysis of transgenic plants

  • Carol Barrette
  • Emily Cobb
  • Ronald McNicol
  • Gary Lyon
Original Research Papers


Agrobacterium transformation systems forBrassica, Solanum andRubus, using carbenicillin, cefotaxime and ticaracillin respectively to eliminate contamination, were examined for the presence of residualAgrobacterium. The results indicated that none of the antibiotics in question, succeeded in eliminatingAgrobacterium and the contamination levels increased in explants from 12 to 16 weeks to such an extent thatSolanum cultures senesced and died. This may be due to the fact that four times the Minimum bactericidal concentration values (concentration to be used for elimination of contaminants in culture), for the three antibiotics, were higher than the concentrations employed in the culture medium. Contamination in shoot material decreased over 16 to 24 weeks possibly due to bacteriostatis and the use only of the apical node for further culture. The presence of the binary vector was also noted under non-selective conditions, even up to 6 months after transformation, where approx. 50% of contaminated material still harboured bacterial cells with the binary vector at levels of approx. 107 Colony forming units per gram.

Key words

binary vector minimum bactericidal concentration residual Agrobacterium 



colony forming units




polymerase chain reaction


minimum bactericidal concentration


neomycin phosphotransferase


random amplified polymorphic DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage P, Walden R & Draper J (1988) Vectors for transformation of plant cells usingAgrobacterium. In: Draper J, Scott R, Armitage P & Walden R (eds) Plant Genetic Transformation and Gene Expression: A Laboratory Manual (pp 58–60). Blackwell Scientific Pubs., OxfordGoogle Scholar
  2. Barrett C & Cassells AC (1994) An evaluation of antibiotics for the elimination ofXanthomonas campestris pv.pelargonii (Brown) fromPelargonium xdomesticum cv. Grand Slam explantsin vivo. Plant Cell Tiss. Org. Cult. 36: 169–175CrossRefGoogle Scholar
  3. Barghchi M, Turgut K, Scott R & Draper J (1994) High frequency transformation from cultured cotyledons ofArabadopsis thaliana ecotypes “C24” and “Landsbergerecta”. Plant Growth Regulations 14: 61–67Google Scholar
  4. Bastaeiens L, Maene L, Harbaori Y, Van Sumere C, Van de Castelle KL & Debergh PC (1983) The influence of antibacterial products on plant tissue cultures. Med. Fac. Landbouwv. Rijsuniv. Gent. 48: 13–24Google Scholar
  5. Bertram J, Stratz M & Durre P (1991) Natural transfer of conjugative transposon Tn916 between gram - positive and gram - negative bacteria. J. Bacterial. 173(2): 443–448Google Scholar
  6. da Camara Machado ML, da Camara Machado A, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B & Katinger H (1992) Regeneration of transgenic plants ofPrunus armeniaca containing the coat protein gene of Plum Pox Virus. Plant Cell Rep. 11: 25–29Google Scholar
  7. Cassells AC, Harney MA, Carney BF, Mc Carthy E & Mc Hugh A (1988) Problems posed by cultivable bacteria and the endophytes in the establishment of axenic cultures ofPelargonium xdomesticum: The use ofXanthomonas pelargonii specific ELISA, DNA probes and culture indexing in the screening of antibiotic treated and untreated donor plants. Acta Hort. 225: 153–162Google Scholar
  8. Cassells AC (1991) Problems in tissue culture: culture contamination. In: Debergh PC & Zimmerman RH (eds) Micropropagation (pp 31–44). Kluwer Acad. Pubs, NetherlandsGoogle Scholar
  9. Confalonieri M, Balestrazzi A & Bisoffi S (1994) Genetic transformation ofPopulus nigra byAgrobacterium tumefaciens. Plant Cell Rep. 13: 256–261CrossRefGoogle Scholar
  10. Dale PJ, Irwin JA & Scheffler JA (1993) Review: The experimental and commercial release of transgenic crop plants. Plant Breeding 111: 1–22Google Scholar
  11. De Bondt A, Eggermont K, Druart P, De Vil M, Goderis I, Vanderleyden J & Broekaert W (1994)Agrobacterium-mediated transformation of apple (Malus xdomestica Borkh.): An assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Rep. 13: 587–593CrossRefGoogle Scholar
  12. Draper J, Scott R & Hamil J (1988) Transformation of dicotyledonous plant cells using the Ti plasmid ofAgrobacterium nonefaciens and the Ri plasmid ofA. rhizogenes. In: Draper J, Scott R, Armitage P and Walden R (eds) Plant Genetic Transformation and Gene Expression: A Laboratory Manual (pp71–132). Blackwell Scientific Pubs, OxfordGoogle Scholar
  13. Eapen S & George L (1994)Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.). Plant Cell Rep. 13: 582–586CrossRefGoogle Scholar
  14. Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M & Schell J (1977) Ti plasmids ofAgrobacterium as conjugative plasmids. Nature 260: 561–562Google Scholar
  15. Gonsalves C, Xue B, Yepes M, Fuchs M, Ling K, Namba S, Chee P, Slightim JL & Gonsalves D (1994) Transferring cucumber mozaic virus-white leaf strain coat protein gene intoCucumis melo L. and evaluating transgenic plants for protection against infections. J. Am. Soc. Hort. Sci. 119(2): 345–355Google Scholar
  16. Graham J & Mc Nicol R (1990) Plantlet regeneration and genetic transformation in soft fruit species. Acta Hort. 280: 517–522Google Scholar
  17. Grierson D & Covey S (1984) Genetic colonisation of plants byAgrobacterium. In: Plant Molecular Biology (pp 112–125). Blackie & Son Pubs., GlasgowGoogle Scholar
  18. Hamill J, Rounsley S, Spencer A, Todd G & Rhodes M (1990) The use of the polymerase chain reaction to detect specific sequences in transformed plant tissues. In: Nijkamp H J S, van der Plas L H W & van Aartijk (eds) Progress in Plant Cellular and Molecular Biology (pp 183–188). Kluwer Acadmic, Dordrecht.Google Scholar
  19. Hassan M, Swartz H, Inamine G & Mullineaux P (1993)Agrobacterium tumefaciens - mediated transformation of severalRubus genotypes and recovery of transformed plants. Plant Cell Tiss. Org. Cult. 33: 9–17CrossRefGoogle Scholar
  20. Hayward AC (1974) Latent infections by bacteria. Ann. Rev. Phytopath. 12: 87–97CrossRefGoogle Scholar
  21. Heinemann J & Sprague G (1989) Bacterial conjugative plasmids mobilise DNA transfer between bacteria and yeast. Nature 340: 205–209CrossRefPubMedGoogle Scholar
  22. Higgins E, Hulme J & Shields R (1992) Early events in transformation of potato byAgrobacterium tumefaciens. Plant Science 82: 109–118CrossRefGoogle Scholar
  23. van der Hoeven C, Dietz A & Landsmann J (1994) Variability of organ-specific gene expression in transgenic tobacco plants. Trans. Res. 3: 159–165Google Scholar
  24. Horsch R & King K (1983) A covert contaminant of cultured plant cells: elimination of aHyphomicrobium sp. from culture ofDatura innoxia (Mill.). Pl. Cell Tiss. Org. Cult. 2: 21–28Google Scholar
  25. Howe GT, Goldfarb B & Strauss SH (1994)Agrobacterium - mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Tiss. Org. Cult. 36: 59–71CrossRefGoogle Scholar
  26. Hulme J, Higgins E & Shields R (1992) An efficient genotype - independent method for regeneration of potato plants from leaf tissue. Plant Cell Tiss. Org. Cult. 3: 161–167Google Scholar
  27. Jacq B, Lesobre O, Sangwan S & Sangwan - Noreel S (1993) Factors influencing T - DNA transfer inAgrobacterium - mediated transformation of sugarbeet. Plant Cell Rep. 12: 621–624CrossRefGoogle Scholar
  28. Jefferson R A (1987a) GUS gene fusion system user's manual. Plant Breeding Institute, Cambridge version 1.21Google Scholar
  29. Jefferson R A (1987b) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5(4): 387–405Google Scholar
  30. Jones JB & Raju BC (1988) Systemic movement ofAgrobacterium tumefaciens in symptomless stem tissue ofChrysanthemum morifolium. Plant Disease 72: 51–54Google Scholar
  31. Kerr A, Manigault P & Tempe J (1977) Transfer of virulence in vivo andin vitro inAgrobacterium. Nature 265: 560–561CrossRefPubMedGoogle Scholar
  32. Leifert C, Camotta H, Wright S, Waites B, Cheyene V & Waites WM (1991) Elimination ofLactobacillus plantarum, Corynebacterium spp.,Staphlococcus saprophyticus andPseudomonas paucimobilis from micropropagatedHemercallis, Choisya andDelphinium cultures using antibiotics. J. App. Bact. 71: 307–330Google Scholar
  33. Lilley A, Fry J, Day J & Bailey M (1994)In situ transfer of an exogenously isolated plasmid betweenPseudomonas spp. in sugarbeet rhizosphere. Microbiology 140: 27–33Google Scholar
  34. Lorenz M & Wackernagel W (1991) High frequency of natural genetic transformation ofPseudomonas stutzeri in soil extract supplemented with a carbon/energy and phosphorus source. Applied and Environmental Microbiology 57(4:): 1246–1251PubMedGoogle Scholar
  35. Maheswaran G, Welander M, Hutchinson JF, Graham MW & Richards D (1992) Transformation of apple rootstock M26 withAgrobacterium tumefaciens. J. Plant Physiol. 139: 560–568Google Scholar
  36. Martin GC, Miller AN, Castle LA, Moms JW & Dandekar AM (1990) Feasibility studies using the β-glucuronidase as a gene fusion marker in apple, peach and radish. J. Am. Soc. Hort. Sci. 115(4): 686–691Google Scholar
  37. Millam S (1989)Agrobacterium - mediated transformation systems of Brassica species. Aspects of Appl. Biol. 23: 23–30Google Scholar
  38. Mlynarova L, Bauer M, Nap J & Pretova A (1994) High efficiencyAgrobacterium - mediated gene transfer to flax. Plant Cell Rep. 13: 282–285Google Scholar
  39. Mogilner N, Zutra D, Gafny R & Bar - Joseph M (1993) The persistence of engineeredAgrobacterium tumefaciens in agroinfected plants. Molecular Plant - Microbe Interactions 6(50): 673–675PubMedGoogle Scholar
  40. Moloney M, Walker J & Sharma K (1989) High efficiency transformation of Brassica napus usingAgrobacterium vectors. Plant Cell Rep. 8: 238–242CrossRefGoogle Scholar
  41. Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco. Physiol. Plantarum 15: 47–497Google Scholar
  42. Pugliesi C, Biasini MG, Fambrini M & Baroncelli S (1993) Genetic transformation byAgrobacterium in the interspecific hybridHelianthus annuus xHelianthus tuberosus. Plant Sci. 93: 105–115CrossRefGoogle Scholar
  43. Radke S, Andrews B, Moloney M, Crouch M, Kridl J & Knauf V (1988) Transformation ofBrassica napus L. usingAgrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Gen. 75: 685–694CrossRefGoogle Scholar
  44. Sarria R, Calderon A, Thro AM, Tortes E, Mayer J & Roca WM (1994)Agrobacterium-mediated transformation ofStylosanthes guianensis and production of transgenic plants. Plant Sci. 96: 119–127CrossRefGoogle Scholar
  45. Schafer A, Kalinowski J, Simon R & Seep - Feldhaus A (1990) High - frequency conjugal plasmid transfer from gram - negativeEscherichia coli to various gram - positive Coryneform - bacteria. J. Bacteriol. 172(3): 1663–1666PubMedGoogle Scholar
  46. Tarbah FA & Goodman RN (1987) Systemic spread ofAgrobacterium tumefaciens Biovar 3 in the vascular system of grapes. Phytopath. 77: 915–920Google Scholar
  47. Valles MP & Lasa JM Agrobacterium-mediated transformation of commercial melon (Cucumis melo L., cv. Amarillo Oro).Plant Cell Rep. 13: 145–148Google Scholar
  48. Wenzler H, Mignery G, May G & Park W (1989) A rapid and efficient transformation method for the production of large numbers of transgenic potato plants. Plant Sci. 63: 79–85CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Carol Barrette
    • 1
  • Emily Cobb
    • 2
  • Ronald McNicol
    • 2
  • Gary Lyon
    • 2
  1. 1.Teagasc, Kinsealy Research and Development CentreDublinIreland
  2. 2.Scottish Crop Research InstituteInvergowrieScotland

Personalised recommendations