Skip to main content
Log in

Laser generated and recorded transient bending waves in composite tubes

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Propagating bending waves are studied in three different composite tubes by holographic interferometry. A conical mirror is placed axially inside the tubes. Axial illumination and observation directions make it possible to view the circumference of the tube, with a high sensitivity to radial deformation. It is shown how the deformation field can be numerically evaluated using a phase stepping and unwrapping technique. Transient bending waves in the tubes are both generated and recorded by the same pulsed laser, which makes the experiments easy to perform. Finite element simulations of the impacted tubes are compared to corresponding experiments. Both the geometry and the material properties of the tubes affect the wave propagation. For unidirectional composite tubes, the 0-deg and 90-deg directions have different dynamic behavior. The proposed method could be used in nondestructive testing of tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vest, C.M., Holographic Interferometry, John Wiley and Sons, New York (1979).

    Google Scholar 

  2. Aprahamian, R., Evenson, D.A., Mixson, J.S. andJacoby, J.L., “Holographic Study of Propagating Transverse Waves in Plates,”Experimental Mechanics,11 (8),357–362 (1971).

    Google Scholar 

  3. Schwieger, H. andStreubel, R., “The Deformation Analysis of Transversely Struck Isotropic and Anisotropic Plates by Using the Holographic Double Exposure Technique,”SPIE Symposium OPTIKA '84, 473, 77–80 (1984).

    Google Scholar 

  4. Fällström, K.E., Gustavsson, H., Molin, N.-E. andWåhlin, A., “Transient Bending Waves in Plates Studied by Hologram Interferometry,”Experimental Mechanics,29 (4),378–387 (1989).

    Google Scholar 

  5. Fällström, K.E., Lindgren, L.-E., Molin, N.-E. andWåhlin, A., “Transtent Bending Waves in Anisotropic Plates Studies by Hologram Interferometry,”Experimental Mechanics,29 (4),409–413 (1989).

    Google Scholar 

  6. Molin, N.-E., Wåhlin, A.O. andJansson, E.V., “Transient Wave Response of a Violin Body,”J. Acoust. Soc. Am.,88 (5),2479–2481 (1990).

    Article  Google Scholar 

  7. Hartikainen, T.H., Peiponen, K.-E. andToshimitsu, A., “Holographic Inspection of Metal Objects,”Opt. and Lasers in Eng.,17,51–54 (1992).

    Google Scholar 

  8. Gilbert, J.A., Matthys, D.R. and Greguss, P., “Optical Measurements through Panoramic Imaging Systems,” Hologram Interferometry and Speckle Metrology, Proc. 1990 Fall Conf. SEM (SEM Publications, Bethel), 164–171 (1990).

  9. Olofsson, K. andLindgren, L.E., “Holographic Interferometry Measurements of Transient Bending Waves in Tubes and Rings,Experimental Mechanics,33 (4),308–313 (1993).

    Article  Google Scholar 

  10. Fällström, K.-E., Molin, N.-E., Olofsson, K., Palágyi, P. and Wåhlin, A., “A Study of the Deformation of a Steel Plate When Impacted by a Focused Laser Pulse,” NDT & E (1994) (submitted for publication).

  11. Crawforth, L., Lee, C.-K. andMunce, A.C., “Application of Pulsed Laser Holographic Interferometry to the Study of Magnetic Disk Drive Component Motions,”Hologram Interferometry and Speckle Metrology, Proc. 1990 Fall Conf. SEM (SEM Publications, Bethel),404–409 (1990).

    Google Scholar 

  12. Leidenbach, S., “Die direkte Phasemessung—ein neues Verfahren zur Berechnung von Phasenbildern aus nur einem Intensitätsbild,”Laser in Engineering Proc. 10th Int. Cong. LASER 91 (Springer-Verlag, Berlin/Heidelberg/New York/London/Paris/Tokyo/Hong Kong/Barcelona/Budapest),68–72 (1992).

    Google Scholar 

  13. Dändliker, R., Thalmann, R. andWillemin, J.-F., “Fringe Interpolation by Two-reference-beam Holographic Interferometry: Reducing Sensitivity to Hologram Misalignment,”Opt. Commun.,42 (5),301–306 (1982).

    Article  Google Scholar 

  14. Creath, K., “Phase-measurement Interferometry Techniques,”Progress in Optics (E. Wolf, Elsevier Science Publishers, Amsterdam),26,349–393 (1988).

    Google Scholar 

  15. Mallik, P.K., Fiber-reinforced Composites: Materials, Manufacturing and Design, Marcel Dekker, Inc., New York and Basel (1988).

    Google Scholar 

  16. Datoo, M.H., Mechanics of Fibrous Composites, Elsevier Science Publishers Ltd., London and New York (1991).

    Google Scholar 

  17. Huntley, J.M., “Noise-immune Phase Unwrapping Algorithm,”Appl. Opt.,28 (15),3268–3270 (1989).

    Google Scholar 

  18. Whirley, R.G., DYNA3D Users Manual, UCID-19592, Rev. 5.

  19. Palágyi, P., “Numerical Analysis of Bending Wave Propagation in Orthotropic Pipes,” Master's Thesis 025 E, Luleå University of Technology (1994) (ISRN: HLU-TH-EX-1994/25-E-SE).

  20. Daniel, I.M., LaBedz, R.H. andLiber, T., “New Method for Testing Composites at Very High Strain Rates,”Experimental Mechanics,21 (2),71–77 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olofsson, K., Fällström, K.E. & Palágyi, P. Laser generated and recorded transient bending waves in composite tubes. Experimental Mechanics 36, 224–231 (1996). https://doi.org/10.1007/BF02318011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02318011

Keywords

Navigation